Borelli, Giovanni Alfonso
,
De motionibus naturalibus a gravitate pendentibus
,
1670
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
Table of figures
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 186
[out of range]
>
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 186
[out of range]
>
page
|<
<
of 579
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
p
type
="
main
">
<
s
id
="
s.002830
">
<
pb
pagenum
="
529
"
xlink:href
="
010/01/537.jpg
"/>
<
arrow.to.target
n
="
marg745
"/>
<
lb
/>
particulæ componentes corpus flexibile non duræ,
<
lb
/>
ſed flexibiles; ergo
<
expan
abbr
="
diuidẽdo
">diuidendo</
expan
>
prædictum corpus fle
<
lb
/>
xibile numquam deueniemus ad particulam eius,
<
lb
/>
<
arrow.to.target
n
="
marg746
"/>
<
lb
/>
quæ rigida ſit, ſed ſemper flecti poterit; & quia cau
<
lb
/>
ſa, quare prædictum corpus flectitur, eſt quia aliquę
<
lb
/>
eius partes mouentur reliquis quieſcentibus, vel di
<
lb
/>
uerſo, & inæquali motu, continuo corpori non com
<
lb
/>
petenti, ab eo quo reliquæ contiguæ partes agitan
<
lb
/>
tur; nec concipi poſſit nullam particulam flexibilis
<
lb
/>
corporis carere hac paſſione flexibilitatis, niſi ſem
<
lb
/>
per ei flexibilitatis definitio competat, ſcilicèt niſi
<
lb
/>
ſemper quælibet eius particulæ moueri queant inæ
<
lb
/>
quali motu diuerſo (& non proprio corporis conti
<
lb
/>
nui, & vniti) à cæteris contiguis; & partes contiguæ
<
lb
/>
<
arrow.to.target
n
="
marg747
"/>
<
lb
/>
eiuſdem concreti non poſſunt prædictis motibus di
<
lb
/>
uerſis agitari, niſi actu diuiſæ inter ſe ſint, ergo nul
<
lb
/>
la particula flexibilis corporis aſſignari poteſt, quæ
<
lb
/>
actu non ſit ſubdiuiſa in plures alias particulas; qua
<
lb
/>
re numquam perueniri poterit ad finem enumerati
<
lb
/>
onis multitudinis particularum actu diuiſarum, qua
<
lb
/>
propter talis multitudo maior erit quocumque nu
<
lb
/>
<
arrow.to.target
n
="
marg748
"/>
<
lb
/>
mero, ideoque infinita erit. </
s
>
<
s
id
="
s.002831
">Verùm prædictæ partes
<
lb
/>
infinitæ ſi eſſent quantæ, actu inter ſe diuiſæ compo
<
lb
/>
nerent extenſionem infinitam, ergo corpus aliquod
<
lb
/>
palmare v.g. infinitam extenſionem haberet, quod
<
lb
/>
eſt falſum; non igitur quantæ, ſed puncta indiuiſibi
<
lb
/>
lia erunt, quod cum ſit impoſſibile, vt dictum eſt, ſe
<
lb
/>
<
arrow.to.target
n
="
marg749
"/>
<
lb
/>
quitur, quod partes flexibile corpus componentes
<
lb
/>
non ſint flexibiles, proindeque duræ, & rigidæ eſſe </
s
>
</
p
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>