Borelli, Giovanni Alfonso
,
De motionibus naturalibus a gravitate pendentibus
,
1670
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
Table of figures
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 186
[out of range]
>
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 186
[out of range]
>
page
|<
<
of 579
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
p
type
="
main
">
<
s
id
="
s.002819
">
<
pb
pagenum
="
528
"
xlink:href
="
010/01/536.jpg
"/>
<
arrow.to.target
n
="
marg741
"/>
<
lb
/>
portione, quam partes rotæ ſolidę agitantur, vt
<
expan
abbr
="
dictũ
">dictum</
expan
>
<
lb
/>
eſt; vt
<
expan
abbr
="
autẽ
">autem</
expan
>
<
expan
abbr
="
verũ
">verum</
expan
>
ſit nullam
<
expan
abbr
="
particulã
">particulam</
expan
>
corporis mollis
<
lb
/>
carere hac paſſione mollitiei, neceſsè eſt, vt ſemper
<
lb
/>
ei conueniat mollitiei definitio, ſcilicèt ſemper quę
<
lb
/>
libet eius partes moueri queant, illo inæquali, & di
<
lb
/>
<
arrow.to.target
n
="
marg742
"/>
<
lb
/>
uerſo motu à cæteris contiguis; cumque contiguæ e
<
lb
/>
iuſdem concreti partes non poſſint diuerſis, & omni
<
lb
/>
bus inæqualibus motionibus agitari, niſi ſint diſſectę,
<
lb
/>
& inter ſe diuiſæ actu; ergo nulla particula mollis
<
lb
/>
corporis aſſignari poteſt, quæ non ſit ſubdiuiſa actu
<
lb
/>
in plures alias particulas, quare numquam perueniri
<
lb
/>
poterit ad finem enumerationis multitudinis parti
<
lb
/>
cularum actu diuiſarum in prædicto
<
expan
abbr
="
cõpoſito
">compoſito</
expan
>
molli,
<
lb
/>
& ideò talis multitudo maior erit
<
expan
abbr
="
quocũque
">quocunque</
expan
>
numero,
<
lb
/>
ſcilicèt maior erit quacumque finita quantitate: igi
<
lb
/>
<
arrow.to.target
n
="
marg743
"/>
<
lb
/>
tur infinita erit. </
s
>
<
s
id
="
s.002820
">At infinitæ partes ſi eſſent quantæ
<
lb
/>
actu diuiſæ
<
expan
abbr
="
cõponerent
">componerent</
expan
>
extenſionem infinitam; ergo
<
lb
/>
quodlibet exiguum corpus eſſet infinitum, quod ſen
<
lb
/>
ſus euidentiæ repugnat, ſequitur ergo, quod prædictę
<
lb
/>
particulæ infinitæ non quantæ, & proinde puncta
<
lb
/>
<
arrow.to.target
n
="
marg744
"/>
<
lb
/>
indiuiſibilia ſint, hoc verò eſt impoſſibile, vt priùs
<
lb
/>
oſtenſum eſt; igitur partes molle corpus primum
<
expan
abbr
="
cõ-ponentes
">con
<
lb
/>
ponentes</
expan
>
non ſunt molles, ſed aut flexibiles, aut om
<
lb
/>
ninò duræ, & rigidæ erunt. </
s
>
</
p
>
<
p
type
="
margin
">
<
s
id
="
s.002821
">
<
margin.target
id
="
marg740
"/>
De vi per
<
lb
/>
cuſs. </
s
>
<
s
id
="
s.002822
">cap. 26.</
s
>
</
p
>
<
p
type
="
margin
">
<
s
id
="
s.002823
">
<
margin.target
id
="
marg741
"/>
Cap. 12. dę
<
lb
/>
vacui neceſ
<
lb
/>
ſitate.</
s
>
</
p
>
<
p
type
="
margin
">
<
s
id
="
s.002824
">
<
margin.target
id
="
marg742
"/>
Pro. 137.</
s
>
</
p
>
<
p
type
="
margin
">
<
s
id
="
s.002825
">
<
margin.target
id
="
marg743
"/>
Prop. 135. &
<
lb
/>
136.</
s
>
</
p
>
<
p
type
="
margin
">
<
s
id
="
s.002826
">
<
margin.target
id
="
marg744
"/>
Prop. </
s
>
<
s
id
="
s.002827
">134.</
s
>
</
p
>
<
p
type
="
main
">
<
s
id
="
s.002828
">
<
emph
type
="
center
"/>
PROP. CCLXI.
<
emph.end
type
="
center
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
id
="
s.002829
">
<
emph
type
="
center
"/>
<
emph
type
="
italics
"/>
Eodem progreſſu oſtendemus, quod minimæ partes flexibile
<
lb
/>
corpus primum componentes omninò inflexibiles,
<
lb
/>
rigidæ, & duræ eſſe debent.
<
emph.end
type
="
italics
"/>
<
emph.end
type
="
center
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
id
="
s.002830
">NAm ſi hoc verum non eſt, ſint prædictæ primæ </
s
>
</
p
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>