Borelli, Giovanni Alfonso, De motionibus naturalibus a gravitate pendentibus, 1670

Table of figures

< >
[81. Figure]
[82. Figure]
[83. Figure]
[84. Figure]
[85. Figure]
[86. Figure]
[87. Figure]
[88. Figure]
[89. Figure]
[90. Figure]
[91. Figure]
[92. Figure]
[93. Figure]
[94. Figure]
[95. Figure]
[96. Figure]
[97. Figure]
[98. Figure]
[99. Figure]
[100. Figure]
[101. Figure]
[102. Figure]
[103. Figure]
[104. Figure]
[105. Figure]
[106. Figure]
[107. Figure]
[108. Figure]
[109. Figure]
[110. Figure]
< >
page |< < of 579 > >|
    <archimedes>
      <text>
        <body>
          <chap>
            <p type="main">
              <s id="s.000377">
                <pb pagenum="80" xlink:href="010/01/088.jpg"/>
                <arrow.to.target n="marg87"/>
                <lb/>
              tra Platonicam ſententiam afferuntur, quæ peruene­
                <lb/>
              re ad meam notitiam. </s>
            </p>
            <p type="margin">
              <s id="s.000378">
                <margin.target id="marg87"/>
              Cap. 4. poſi­
                <lb/>
              tiuam leui­
                <lb/>
              tatem noņ
                <lb/>
              dari.</s>
            </p>
            <p type="main">
              <s id="s.000379">Quòad primum Ariſtoteles inſectatur Democriti,
                <lb/>
              Platoniſque poſitionem, ſed more ſuo, non contrą
                <lb/>
                <arrow.to.target n="marg88"/>
                <lb/>
              ſententias, at contra mera verba eorum argumenta­
                <lb/>
              tur, ſcilicèt quod terræ grauitas maior, quàm aeris
                <lb/>
              pendeat à copia triangulorum, quæ maior in terra,
                <lb/>
              quàm in aere exiſtit, aſſumitque prædicta triangula,
                <lb/>
              ac ſi eſſent ſuperficies planæ omninò indiuiſibiles,
                <lb/>
              quod patet falſum eſſe, cùm in Platonica poſitionę
                <lb/>
              atomi triangulares ſint corpora, non autem ſuperfi­
                <lb/>
              cies indiuiſibiles. </s>
            </p>
            <p type="margin">
              <s id="s.000380">
                <margin.target id="marg88"/>
              Phyſic.lib.4.
                <lb/>
              cap.2.</s>
            </p>
            <p type="main">
              <s id="s.000381">Præterea contra Democritum, ait, grandem aeris
                <lb/>
              maſſam, veluti eſſet ſphæra aerea habens diametrum
                <lb/>
              decem cubitorum, habere maiorem copiam, &
                <expan abbr="abũ-dantiam">abun­
                  <lb/>
                dantiam</expan>
              pleni, & materiei, quàm exigua pila aquea
                <lb/>
              habens diametrum vnius digiti, & proindè pila ae­
                <lb/>
              rea grauior eſſe deberet, & deorſum deſcendere, &
                <lb/>
                <arrow.to.target n="marg89"/>
                <lb/>
              è
                <expan abbr="cõtrà">contrà</expan>
              aquea vt leuis ſursùm eleuari deberet. </s>
              <s id="s.000382">Hoc,
                <lb/>
              inquam, argumentum non afficit Democritum, qui
                <lb/>
              numquam tantam abſurditatem ſomniauit,
                <expan abbr="numquã">numquam</expan>
                <lb/>
              enim conſiderauit plenum ſolitarium, ſed vnà cum
                <lb/>
              pleno ingentem vacui molem augmentatam in illą
                <lb/>
              grandi aerea pila, & ſemper maiori cum proportio­
                <lb/>
              ne, quàm ſe habeat plenum aeris ad plenum aquæ.
                <lb/>
              </s>
              <s id="s.000383">Quam exceptionem parùm ſincerè Ariſtoteles ſub ſi­
                <lb/>
              lentio inuoluit, quoniam exiſtente aere rariore,
                <expan abbr="quã">quam</expan>
                <lb/>
              ſit ipſa aqua, habebit pars vacua ad partem plenam̨
                <lb/>
              aeris maiorem proportionem, quàm habet pars va-</s>
            </p>
          </chap>
        </body>
      </text>
    </archimedes>