Borelli, Giovanni Alfonso, De motionibus naturalibus a gravitate pendentibus, 1670

Table of figures

< >
[91. Figure]
[92. Figure]
[93. Figure]
[94. Figure]
[95. Figure]
[96. Figure]
[97. Figure]
[98. Figure]
[99. Figure]
[100. Figure]
[101. Figure]
[102. Figure]
[103. Figure]
[104. Figure]
[105. Figure]
[106. Figure]
[107. Figure]
[108. Figure]
[109. Figure]
[110. Figure]
[111. Figure]
[112. Figure]
[113. Figure]
[114. Figure]
[115. Figure]
[116. Figure]
[117. Figure]
[118. Figure]
[119. Figure]
[120. Figure]
< >
page |< < of 579 > >|
    <archimedes>
      <text>
        <body>
          <chap>
            <p type="main">
              <s id="s.001525">
                <pb pagenum="291" xlink:href="010/01/299.jpg"/>
                <arrow.to.target n="marg389"/>
                <lb/>
              petit diſtantiæ eius ab axe, tunc neceſſariò talis par­
                <lb/>
              ticula erit à rota disiuncta, & ſegregata. </s>
              <s id="s.001526">Vt in rotą
                <lb/>
                <figure id="id.010.01.299.1.jpg" xlink:href="010/01/299/1.jpg"/>
                <lb/>
              AEH reuoluta circa cen­
                <lb/>
              trum D ſi eius particulæ
                <lb/>
              A, B, C eodem
                <expan abbr="tẽpore">tempore</expan>
                <expan abbr="de-ſcribũt">de­
                  <lb/>
                ſcribunt</expan>
              orbes AEH, BFI,
                <lb/>
              CGL,
                <expan abbr="eãdem">eandem</expan>
              proportio­
                <lb/>
              nem habentes quam di­
                <lb/>
              ſtantiæ à centro AD, BD,
                <lb/>
              & CD tunc diſtingui non
                <lb/>
              poteſt an prędictæ parti­
                <lb/>
              culæ ſint diſciſſæ vt arena,
                <lb/>
              vel ſint agglutinatæ rotæ ſolidæ, propterea quòd id
                <lb/>
              ipſum ſymptoma particulis duriſſimæ rotæ competit.
                <lb/>
              </s>
              <s id="s.001527">Si verò
                <expan abbr="circũducta">circunducta</expan>
              rota particula A relicto orbe AHE
                <lb/>
              excurrit per tangentem rectam AM, aut curuam ſpi­
                <lb/>
              ralem AN euidentiſſimum ſignum erit particulam A
                <lb/>
              non eſſe annexam, & vnitam, ſed diuiſam à rota ſo­
                <lb/>
              lida, quia continentèr à centro D magis, & magis re­
                <lb/>
              mouetur vt in N, vel M. </s>
            </p>
            <p type="margin">
              <s id="s.001528">
                <margin.target id="marg389"/>
              Cap. 7. dę
                <lb/>
              natura flui­
                <lb/>
              ditatis.</s>
            </p>
            <p type="main">
              <s id="s.001529">Præterea ſi particulæ eamdem à centro
                <expan abbr="diſtantiã">diſtantiam</expan>
                <lb/>
              retinuerint, & eodem tempore, quo rota integram̨
                <lb/>
              reuolutionem BFB abſoluit, alia particula A, vel
                <lb/>
              maius, vel minus ſpatium, quàm circulum AEA per­
                <lb/>
              ſicit, ſcilicèt percurrit arcum AEH, vel AEO, tunc
                <lb/>
              euidentèr conſtat particulam A non eſſe agglutina­
                <lb/>
              tam, ſed diuiſam à rota ſolida. </s>
            </p>
            <p type="main">
              <s id="s.001530">Similitèr in motu directo aggregati AEH, ſi eius
                <lb/>
              particulæ inæqualibus velocitatibus feruntur, ſcili-</s>
            </p>
          </chap>
        </body>
      </text>
    </archimedes>