Borelli, Giovanni Alfonso, De motionibus naturalibus a gravitate pendentibus, 1670

Table of figures

< >
< >
page |< < of 579 > >|
    <archimedes>
      <text>
        <body>
          <chap>
            <p type="main">
              <s id="s.001204">
                <pb pagenum="234" xlink:href="010/01/242.jpg"/>
                <arrow.to.target n="marg312"/>
                <lb/>
              pla potentia P, ſed a duplici
                <lb/>
                <figure id="id.010.01.242.1.jpg" xlink:href="010/01/242/1.jpg"/>
                <lb/>
              potentia, tanquam à forcipe,
                <lb/>
              vel prælo, nempè à P, & ab
                <lb/>
              huic æquali reſiſtentia paui­
                <lb/>
              menti RS. </s>
              <s id="s.001205">Igitur æquè com­
                <lb/>
              primetur anulus, vel veſica
                <lb/>
              aerea ſolo innixa à ſingulari
                <lb/>
              potentia P, ac ſi à duabus contrarijs potentijs P, &
                <lb/>
              E, vel G conſtringeretur. </s>
            </p>
            <p type="margin">
              <s id="s.001206">
                <margin.target id="marg312"/>
              Cap. 5. de ae
                <lb/>
              ris grauitate
                <lb/>
              æquilibrio,
                <lb/>
              ſtructura, &
                <lb/>
              vi elateria
                <lb/>
              eius.</s>
            </p>
            <p type="main">
              <s id="s.001207">
                <emph type="center"/>
                <emph type="italics"/>
              COROLLARIVM.
                <emph.end type="italics"/>
                <emph.end type="center"/>
              </s>
            </p>
            <p type="main">
              <s id="s.001208">HInc patet, quòd ſi duæ potentiæ æquales ſimul
                <lb/>
              coniunctæ comprimant eumdem ſupremum̨
                <lb/>
              anuli terminum pauimento innixi, tunc momentum̨
                <lb/>
              fiue energia, qua anulus contunditur ſtringiturquę
                <lb/>
              duplex eſt eius, qua ab ijſdem potentijs oppoſitos
                <lb/>
              terminos ſtringentibus comprimitur. </s>
            </p>
            <p type="main">
              <s id="s.001209">Quia quotieſcum que duæ potentiæ inter ſe æqua­
                <lb/>
              les P & G premunt ſupremum terminum B anuli BC,
                <lb/>
              tunc ſolum ſtabile RS in E, cui innititur idem præſtat,
                <lb/>
              & tanta energia operatur, ac ſi in E adeſſet potentią
                <lb/>
              æqualis ambabus contrarijs potentijs G & P: quare
                <lb/>
              vis, qua ſtringitur anulus æqualis eſt duplo potentia­
                <lb/>
              rum G, & P. è contrà quando anulus ſtringitur ab ijſ­
                <lb/>
              dem potentijs G, & P ſubdiuiſis, ſcilicèt à potentią
                <lb/>
              P in ſitu B, atque à potentia G in oppoſito eius ter­
                <lb/>
              mino C vt in præcedenti figura videre eſt, tunc vis,
                <lb/>
              qua ſtringitur anulus, æqualis eſt præcisè duabus po­
                <lb/>
              tentijs oppoſitis G, & P, igitur quando anulus ſolo </s>
            </p>
          </chap>
        </body>
      </text>
    </archimedes>