Borelli, Giovanni Alfonso, De motionibus naturalibus a gravitate pendentibus, 1670

Table of figures

< >
[31. Figure]
[32. Figure]
[33. Figure]
[34. Figure]
[35. Figure]
[36. Figure]
[37. Figure]
[38. Figure]
[39. Figure]
[40. Figure]
[41. Figure]
[42. Figure]
[43. Figure]
[44. Figure]
[45. Figure]
[46. Figure]
[47. Figure]
[48. Figure]
[49. Figure]
[50. Figure]
[51. Figure]
[52. Figure]
[53. Figure]
[54. Figure]
[55. Figure]
[56. Figure]
[57. Figure]
[58. Figure]
[59. Figure]
[60. Figure]
< >
page |< < of 579 > >|
    <archimedes>
      <text>
        <body>
          <chap>
            <p type="main">
              <s id="s.000120">
                <pb pagenum="24" xlink:href="010/01/032.jpg"/>
                <arrow.to.target n="marg24"/>
                <lb/>
              ſus talis eſt, cùm primum cylindrus mercurij CB fer­
                <lb/>
              tur deorsùm transferendo eius centrum H in N, de­
                <lb/>
              nuò comparatur cum alio aquæ cylindro æquali ipſi
                <lb/>
              FG è regione poſito, cuius centrum grauitatis erit
                <lb/>
              punctum O, & tunc denuò creatur noua libra
                <expan abbr="horizõ-talis">horizon­
                  <lb/>
                talis</expan>
              NO ſecta à rectis LP & MQ parallelis ENGO,
                <lb/>
              in P & Q cuius centrum P, quia denuò partes aquæ
                <lb/>
              collaterales ſupernæ & infernæ ſibi ipſis æquilibratæ
                <lb/>
              non adiuuant, neque impediunt duo æqualia corpo­
                <lb/>
              ra mercuriale ex N, & aqueum ex O, quæ ad inuicem
                <lb/>
              comparantur in eadem libra horizontali,
                <expan abbr="cumq;">cumque</expan>
              hæc
                <lb/>
              à parallelis lineis HN, MQ, & IO in eiſdem rationi­
                <lb/>
              bus diuidatur, perductum erit centrum grauitatis prę­
                <lb/>
              dictorum corporum ad punctum Q, vnde patet de­
                <lb/>
              ſcendiſſe per rectam lineam MQ perpendicularem ad
                <lb/>
              horizontem, perdurabitque eius deſcenſus,
                <expan abbr="quouſq;">quouſque</expan>
                <lb/>
              corpus mercuriale CB ad ſitum infimum fiſtulæ DE
                <lb/>
              perducatur, quando nimirum eius grauitatis
                <expan abbr="centrũ">centrum</expan>
                <lb/>
              H præcisè infimum ſitum K fiſtulæ attinget. </s>
            </p>
            <p type="margin">
              <s id="s.000121">
                <margin.target id="marg23"/>
              Cap. 2. de
                <lb/>
              momentis
                <lb/>
              grauium in
                <lb/>
              fluido inna­
                <lb/>
              tantium</s>
            </p>
            <p type="margin">
              <s id="s.000122">
                <margin.target id="marg24"/>
              Cap. 2. de
                <lb/>
              momentis
                <lb/>
              grauium in
                <lb/>
              fluido inna­
                <lb/>
              tantium</s>
            </p>
            <p type="main">
              <s id="s.000123">Nec dicas fictionem eſſe quòd adſit libra horizon­
                <lb/>
              talis directa HI, quæ perpetuò renouetur, nam reue­
                <lb/>
              rà fulciuntur, ſuſtentanturque duo cylindri CB, & G
                <lb/>
              F à plano aquæ ſubiectæ CF quod quidem, mobile eſt,
                <lb/>
              cùm cedat deſcenſui mercurij CB & ſuperficies F
                <lb/>
              eleuetur eodem tempore & pari velocitate circa eius
                <lb/>
              punctum intermedium, igitur prædicta duo corpora
                <lb/>
              BC, & GF dum ambo premunt libram fluidam ſub­
                <lb/>
              iectam ſuis ponderibus, & coguntur moueri ſimùl æ­
                <lb/>
              què velociter contrarijs lationibus neceſſariò libram </s>
            </p>
          </chap>
        </body>
      </text>
    </archimedes>