Borelli, Giovanni Alfonso, De motionibus naturalibus a gravitate pendentibus, 1670

Table of figures

< >
[31. Figure]
[32. Figure]
[33. Figure]
[34. Figure]
[35. Figure]
[36. Figure]
[37. Figure]
[38. Figure]
[39. Figure]
[40. Figure]
[41. Figure]
[42. Figure]
[43. Figure]
[44. Figure]
[45. Figure]
[46. Figure]
[47. Figure]
[48. Figure]
[49. Figure]
[50. Figure]
[51. Figure]
[52. Figure]
[53. Figure]
[54. Figure]
[55. Figure]
[56. Figure]
[57. Figure]
[58. Figure]
[59. Figure]
[60. Figure]
< >
page |< < of 579 > >|
    <archimedes>
      <text>
        <body>
          <chap>
            <p type="main">
              <s id="s.000146">
                <pb pagenum="31" xlink:href="010/01/039.jpg"/>
                <arrow.to.target n="marg31"/>
                <lb/>
              molis ſupra baſim HD inſiſteret procul dubio ad ma­
                <lb/>
              iorem ſublimitatem eleuaretur prædictum fluidum̨
                <lb/>
              minùs graue ſpecie, quàm aqua AH, cuius
                <expan abbr="abſolutũ">abſolutum</expan>
                <lb/>
              pondus æquale eſſet ponderi eiuſdem aquæ commu­
                <lb/>
              nis AH, quare ab eleuatiori loco fluidum prædictum
                <lb/>
              deorsùm excurrendo eleuaret lignum depreſſum BD
                <lb/>
              præcisè vt in ſiphone ſuperiùs expoſito contingeret. </s>
            </p>
            <p type="margin">
              <s id="s.000147">
                <margin.target id="marg31"/>
              Cap. 2. dę
                <lb/>
              momentis
                <lb/>
              grauium in
                <lb/>
              fluido inna­
                <lb/>
              tantium.</s>
            </p>
            <p type="main">
              <s id="s.000148">Ex hac theoria facili negotio reſolui ac
                <expan abbr="demõſtra-ri">demonſtra­
                  <lb/>
                ri</expan>
              poſſunt omnes propoſitiones, quæ ab Archimedę
                <lb/>
              in primo de infidentibus humido demonſtrantur. </s>
            </p>
            <p type="main">
              <s id="s.000149">
                <emph type="center"/>
              PROP. XII.
                <emph.end type="center"/>
              </s>
            </p>
            <p type="main">
              <s id="s.000150">
                <emph type="center"/>
                <emph type="italics"/>
              In aſcenſu, vel deſcenſu ſolidi in fluide neque libra linearis
                <lb/>
              eſt, neque habet centrum grauitatis in vno puncto
                <lb/>
              ſed libra eſſe ſolet ſuperficialis, cuius fulci­
                <lb/>
              mentum eſt linea circa centrum figuræ,
                <lb/>
              & grauitas communis exercetur
                <lb/>
              quoque in linea aliqua.
                <emph.end type="italics"/>
                <emph.end type="center"/>
              </s>
            </p>
            <p type="main">
              <s id="s.000151">SOlummodò indicabo
                <expan abbr="">non</expan>
              ſemper vſurpari in præ­
                <lb/>
              dicta mechanica operatione punctum, quod
                <expan abbr="cõ-mune">com­
                  <lb/>
                mune</expan>
              centrum grauitatis vocari vulgò ſolet; propte­
                <lb/>
              rea quòd libra compoſita ex ſolido & fluido ambien­
                <lb/>
              te non ſemper linearis eſt, ſed ſuperficiem aliquando
                <lb/>
              componit, in qua nedum fulcimentum, ſed etiam lo­
                <lb/>
              cus vbi exercetur communis grauitas linea eſſe ſolet
                <lb/>
              aliquando recta, aliquando curua, & multoties com­
                <lb/>
              poſita ex pluribus rectis. </s>
              <s id="s.000152">ſi enim in medio aquæ im­
                <lb/>
              mergatur directè & perpendiculariter ad
                <expan abbr="horizontẽ">horizontem</expan>
              </s>
            </p>
          </chap>
        </body>
      </text>
    </archimedes>