Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of figures

< >
[Figure 1]
[Figure 2]
[Figure 3]
[Figure 4]
[Figure 5]
[Figure 6]
[Figure 7]
[Figure 8]
[Figure 9]
[Figure 10]
[Figure 11]
[Figure 12]
[Figure 13]
[Figure 14]
[Figure 15]
[Figure 16]
[Figure 17]
[Figure 18]
[Figure 19]
[Figure 20]
[Figure 21]
[Figure 22]
[Figure 23]
[Figure 24]
[Figure 25]
[Figure 26]
[Figure 27]
[Figure 28]
[Figure 29]
[Figure 30]
< >
page |< < (12) of 213 > >|
3512DE IIS QVAE VEH. IN AQVA. m productam per pendicularem eſſe ad ipſam e f, quam
quidem ſecet in n.
D_vcatvr_ enim à puncto g linea g o ad rectos angulos ipſi
e f, diametrum in o ſecans:
& rurſus ab eodem puncto ducatur g p
ad diametrum perpendicularis:
ſecet autem ipſa diameter producta
lineã e f in q.
erit p b ipſi b q æqualis, ex trigeſimaquinta primi co
nicorum:
& g p pro-
11cor. 8. ſe-
xti.
21[Figure 21] portionalis ĩter q p, p o
quare quadratũ g p re-
2217. ſextĩ. ctangulo o p q æquale
erit:
ſed etiã æquale est
rectangulo cõtento ipſa
p b, &
linea, iuxta quã
poſſunt, quæ à ſectione
ad diametrũ ordinatim
ducuntur, ex undecima
primi conicorum.
ergo
3314. ſexti. quæ est proportio q p
ad p b eadem est lineæ,
iuxta quã poſſunt, quæ
à ſectione ducũtur ad ip
ſam p o:
est autem q p
dupla p b:
cũ ſint p b,
b q æquales, ut dictum
est.
Linea igitur iuxta
quam poſſunt, quæ à ſe-
ctione ducuntur ipſi-
us p o dupla erit:
&
propterea p o æqualis
ei, quæ uſque ad axem,
uidelicet ipſi k h:
ſed eſt p g æqualis k m; & angulus o p g angu-
4432. primi lo h k m;
quòd uterque rectus. quare & o g ipſi h m est œqualis:
554. primi.& angulus p o g angulo _k_ h m. æquidistantes igitur ſunt o g, h n:
6628

Text layer

  • Dictionary

Text normalization

  • Original
  • Regularized
  • Normalized

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index