Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of figures

< >
[Figure 1]
[Figure 2]
[Figure 3]
[Figure 4]
[Figure 5]
[Figure 6]
[Figure 7]
[Figure 8]
[Figure 9]
[Figure 10]
[Figure 11]
[Figure 12]
[Figure 13]
[Figure 14]
[Figure 15]
[Figure 16]
[Figure 17]
[Figure 18]
[Figure 19]
[Figure 20]
[Figure 21]
[Figure 22]
[Figure 23]
[Figure 24]
[Figure 25]
[Figure 26]
[Figure 27]
[Figure 28]
[Figure 29]
[Figure 30]
< >
page |< < of 213 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div216" type="section" level="1" n="73">
          <p>
            <s xml:id="echoid-s3603" xml:space="preserve">
              <pb file="0142" n="142" rhead="FED. COMMANDINI"/>
              <figure xlink:label="fig-0142-01" xlink:href="fig-0142-01a" number="96">
                <image file="0142-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0142-01"/>
              </figure>
            linea x cum ſit minor circulo, uel ellipſi, eſt etiam minor fi-
              <lb/>
            gura rectilinea y. </s>
            <s xml:id="echoid-s3604" xml:space="preserve">ergo pyramis x pyramide y minor erit.
              <lb/>
            </s>
            <s xml:id="echoid-s3605" xml:space="preserve">Sed & </s>
            <s xml:id="echoid-s3606" xml:space="preserve">maior; </s>
            <s xml:id="echoid-s3607" xml:space="preserve">quod fieri nõ poteſt. </s>
            <s xml:id="echoid-s3608" xml:space="preserve">At ſi conus, uel coni por
              <lb/>
            tio x ponatur minor pyramide y: </s>
            <s xml:id="echoid-s3609" xml:space="preserve">ſit alter conus æque al-
              <lb/>
            tus, uel altera coni portio χ ipſi pyramidi y æqualis. </s>
            <s xml:id="echoid-s3610" xml:space="preserve">erit
              <lb/>
            eius baſis circulus, uel ellipſis maior circulo, uel ellipſi x,
              <lb/>
            quorum exceſſus ſit ſpacium ω. </s>
            <s xml:id="echoid-s3611" xml:space="preserve">Siigitur in circulo, uel elli-
              <lb/>
            pſi χ figura rectilinea deſcribatur, ita ut portiones relictæ
              <lb/>
            ſint ω ſpacio minores, eiuſinodi figura adhuc maior erit cir
              <lb/>
            culo, uel ellipſi x, hoc eſt figura rectilinea _y_. </s>
            <s xml:id="echoid-s3612" xml:space="preserve">& </s>
            <s xml:id="echoid-s3613" xml:space="preserve">p_y_ramis in
              <lb/>
            ea conſtituta minor cono, uel coni portione χ, hoc eſt mi-
              <lb/>
            nor p_y_ramide_y_. </s>
            <s xml:id="echoid-s3614" xml:space="preserve">eſt ergo ut χ figura rectilinea ad figuram
              <lb/>
            rectilineam _y_, ita pyramis χ ad pyramidem _y_. </s>
            <s xml:id="echoid-s3615" xml:space="preserve">quare cum
              <lb/>
            figura rectilinea χ ſit maior figura_y_: </s>
            <s xml:id="echoid-s3616" xml:space="preserve">erit & </s>
            <s xml:id="echoid-s3617" xml:space="preserve">p_y_ramis χ p_y_-
              <lb/>
            ramide_y_ maior. </s>
            <s xml:id="echoid-s3618" xml:space="preserve">ſed erat minor; </s>
            <s xml:id="echoid-s3619" xml:space="preserve">quod rurſus fieri non po-
              <lb/>
            teſt. </s>
            <s xml:id="echoid-s3620" xml:space="preserve">non eſt igitur conus, uel coni portio x neque maior,
              <lb/>
            neque minor p_y_ramide_y_. </s>
            <s xml:id="echoid-s3621" xml:space="preserve">ergo ipſi neceſſario eſt æqualis. </s>
            <s xml:id="echoid-s3622" xml:space="preserve">
              <lb/>
            Itaque quoniam ut conus ad conum, uel coni portio ad </s>
          </p>
        </div>
      </text>
    </echo>