Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of figures

< >
[Figure 111]
[Figure 112]
[Figure 113]
[Figure 114]
[Figure 115]
[Figure 116]
[Figure 117]
[Figure 118]
[Figure 119]
[Figure 120]
[Figure 121]
[Figure 122]
[Figure 123]
[Figure 124]
[Figure 125]
[Figure 126]
[Figure 127]
[Figure 128]
[Figure 129]
[Figure 130]
[Figure 131]
[Figure 132]
[Figure 133]
[Figure 134]
[Figure 135]
[Figure 136]
[Figure 137]
[Figure 138]
[Figure 139]
[Figure 140]
< >
page |< < of 213 > >|
156FED. COMMANDINI mus: erit utique grauitatis centrum pyramidis punctum
g:
in quo ſcilicet ipſi axes conueniunt.
THEOREMA XIIII. PROPOSITIO XVIII.
Si ſolidum parallelepipedum ſecetur plano
baſibus æquidiſtante;
erit ſolidum ad ſolidum,
ſicut altitudo ad altitudinem, uel ſicut axisad
axem.
Sit ſolidum parallelepipe
110[Figure 110] dum a b c d e f g h, cuius axis
k 1:
ſeceturq; plano baſibus
æquidiſtante, quod faciat
fectionem m n o p;
& axi in
puncto q occurrat.
Dico
ſolidum g m ad ſolidum m c
eam proportionem habere,
quam altitudo ſolidi g m ha-
betad ſolidi m c altitudi-
nem;
uel quam axis k q ad
axem q l.
Sienim axis K l ad
baſis planum ſit perpendicu
laris, &
linea g c, quæ ex quin
ta huius ipſi k l æquidiſtat,
perpendicularis erit ad idẽ
planum, &
ſolidi altitudi-
nem dimetietur.
Itaqueſo-
112. undeci
mi.
lidum g m ad ſolidum m c
eam proportionem habet,
quam parallelogrammũ g n
ad parallelogrammum n c,
hoc eſt quam linea g o, quæ
22i. ſexti.

Text layer

  • Dictionary

Text normalization

  • Original
  • Regularized
  • Normalized

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index