Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of figures

< >
[111. Figure]
[112. Figure]
[113. Figure]
[114. Figure]
[115. Figure]
[116. Figure]
[117. Figure]
[118. Figure]
[119. Figure]
[120. Figure]
[121. Figure]
[122. Figure]
[123. Figure]
[124. Figure]
[125. Figure]
[126. Figure]
[127. Figure]
[128. Figure]
[129. Figure]
[130. Figure]
[131. Figure]
[132. Figure]
[133. Figure]
[134. Figure]
[135. Figure]
[136. Figure]
[137. Figure]
[138. Figure]
[139. Figure]
[140. Figure]
< >
page |< < of 213 > >|
FED. COMMANDINI
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="92">
          <p>
            <s xml:space="preserve">
              <pb file="0188" n="188" rhead="FED. COMMANDINI"/>
            At cum e f ſit ſexta pars axis
              <lb/>
              <anchor type="figure" xlink:label="fig-0188-01a" xlink:href="fig-0188-01"/>
            ſphæræ, crit d e tripla e f. </s>
            <s xml:space="preserve">ergo
              <lb/>
            punctum e eſt grauitatis cen-
              <lb/>
            trum ipſius pyramidis: </s>
            <s xml:space="preserve">quod
              <lb/>
            in uigeſima ſecunda huius de-
              <lb/>
            monſtratum fuit. </s>
            <s xml:space="preserve">Sed e eſt cen
              <lb/>
            trum ſphæræ. </s>
            <s xml:space="preserve">Sequitur igitur,
              <lb/>
            ut centrum grauitatis pyrami-
              <lb/>
            dis in ſphæra deſcriptæ idem
              <lb/>
            ſit, quod ipſius ſphæræ cen-
              <lb/>
            trum.</s>
            <s xml:space="preserve"/>
          </p>
          <div type="float" level="2" n="1">
            <figure xlink:label="fig-0188-01" xlink:href="fig-0188-01a">
              <image file="0188-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0188-01"/>
            </figure>
          </div>
          <p>
            <s xml:space="preserve">Sit cubus in ſphæra deſcriptus a b, & </s>
            <s xml:space="preserve">oppoſitorum pla-
              <lb/>
            norum lateribus bifariam diuiſis, per puncta diuiſionum
              <lb/>
            plana ducantur, ut communis ipſorum ſectio ſit recta li-
              <lb/>
            nea c d. </s>
            <s xml:space="preserve">Itaque ſi ducatur a b, ſolidi ſcilicet diameter, lineæ
              <lb/>
            a b, c d ex trigeſimanona undecimi ſeſe bifariam ſecabunt.
              <lb/>
            </s>
            <s xml:space="preserve">ſecent autem in puncto e. </s>
            <s xml:space="preserve">erit
              <lb/>
              <anchor type="figure" xlink:label="fig-0188-02a" xlink:href="fig-0188-02"/>
            e centrũ grauitatis ſolidi a b,
              <lb/>
            id quod demonſtratum eſt in
              <lb/>
            octaua huius. </s>
            <s xml:space="preserve">Sed quoniam ab
              <lb/>
            eſt ſphæræ diametro æqualis,
              <lb/>
            ut in decima quinta propoſi-
              <lb/>
            tione tertii decimi libri elemẽ
              <lb/>
            torum oſtenditur: </s>
            <s xml:space="preserve">punctum e
              <lb/>
            ſphæræ quoque centrum erit.
              <lb/>
            </s>
            <s xml:space="preserve">Cubi igitur in ſphæra deſcri-
              <lb/>
            pti grauitatis centrum idem
              <lb/>
            eſt, quod centrum ipſius ſphæræ.</s>
            <s xml:space="preserve"/>
          </p>
          <div type="float" level="2" n="2">
            <figure xlink:label="fig-0188-02" xlink:href="fig-0188-02a">
              <image file="0188-02" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0188-02"/>
            </figure>
          </div>
          <p>
            <s xml:space="preserve">Sit octahedrum a b c d e f, in ſphæra deſcriptum, cuius
              <lb/>
            ſphæræ centrum ſit g. </s>
            <s xml:space="preserve">Dico punctum g ipſius octahedri
              <lb/>
            grauitatis centrum eſſe. </s>
            <s xml:space="preserve">Conſtat enim ex iis, quæ demon-
              <lb/>
            ſtrata ſunt à Campano in quinto decimo libro elemento-
              <lb/>
            rum, propoſitione ſextadecima eiuſimodi ſolidum diuidi
              <lb/>
            in duas pyramides æquales, & </s>
            <s xml:space="preserve">ſimiles; </s>
            <s xml:space="preserve">uidelicetin pyrami-</s>
          </p>
        </div>
      </text>
    </echo>