Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of figures

< >
[Figure 111]
[Figure 112]
[Figure 113]
[Figure 114]
[Figure 115]
[Figure 116]
[Figure 117]
[Figure 118]
[Figure 119]
[Figure 120]
[Figure 121]
[Figure 122]
[Figure 123]
[Figure 124]
[Figure 125]
[Figure 126]
[Figure 127]
[Figure 128]
[Figure 129]
[Figure 130]
[Figure 131]
[Figure 132]
[Figure 133]
[Figure 134]
[Figure 135]
[Figure 136]
[Figure 137]
[Figure 138]
[Figure 139]
[Figure 140]
< >
page |< < of 213 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div231" type="section" level="1" n="79">
          <p>
            <s xml:id="echoid-s3817" xml:space="preserve">
              <pb file="0152" n="152" rhead="FED. COMMANDINI"/>
            da figura, & </s>
            <s xml:id="echoid-s3818" xml:space="preserve">altera circumſcribatur ex cylindris, uel cylin-
              <lb/>
            dri portionibus, ſicuti dictum eſt, ita ut exceſſus, quo figu-
              <lb/>
            ra circumſcripta inſcriptam ſuperat, ſit ſolido g minor.
              <lb/>
            </s>
            <s xml:id="echoid-s3819" xml:space="preserve">Itaque centrum grauitatis cylindri, uel cylindri portionis
              <lb/>
            q r eſt in linea p o; </s>
            <s xml:id="echoid-s3820" xml:space="preserve">cylindri, uel cylindri portionis st cen-
              <lb/>
            trum in linea on; </s>
            <s xml:id="echoid-s3821" xml:space="preserve">centrum u x in linea n m; </s>
            <s xml:id="echoid-s3822" xml:space="preserve">y z in m b; </s>
            <s xml:id="echoid-s3823" xml:space="preserve">η @
              <lb/>
            in 1k; </s>
            <s xml:id="echoid-s3824" xml:space="preserve">λ μ in K h; </s>
            <s xml:id="echoid-s3825" xml:space="preserve">& </s>
            <s xml:id="echoid-s3826" xml:space="preserve">denique ν π centrum in h d. </s>
            <s xml:id="echoid-s3827" xml:space="preserve">ergo figu-
              <lb/>
              <figure xlink:label="fig-0152-01" xlink:href="fig-0152-01a" number="105">
                <image file="0152-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0152-01"/>
              </figure>
            ræ inſcriptæ centrum eſt in linea p d. </s>
            <s xml:id="echoid-s3828" xml:space="preserve">Sitautem ρ: </s>
            <s xml:id="echoid-s3829" xml:space="preserve">& </s>
            <s xml:id="echoid-s3830" xml:space="preserve">iun-
              <lb/>
            cta ρ e protendatur, ut cum linea, quæ à pũctoc ducta fue-
              <lb/>
            rit axi æquidiſtans, conueniat in σ. </s>
            <s xml:id="echoid-s3831" xml:space="preserve">erit σ ζ ad ρ e, ut c d
              <lb/>
            ad d f: </s>
            <s xml:id="echoid-s3832" xml:space="preserve">& </s>
            <s xml:id="echoid-s3833" xml:space="preserve">conus, ſeu coni portio ad exceſſum, quo circum-
              <lb/>
            ſcripta figura inſcriptam ſuperat, habebit maiorem pro-
              <lb/>
            portionem, quàm σ ζ ad ρ e. </s>
            <s xml:id="echoid-s3834" xml:space="preserve">ergo ad partem exceſſus, quæ
              <lb/>
            intra ipſius ſuperficiem comprehenditur, multo maiorem
              <lb/>
            proportionem habebit. </s>
            <s xml:id="echoid-s3835" xml:space="preserve">habeat eam, quam τ ρ ad ρ e. </s>
            <s xml:id="echoid-s3836" xml:space="preserve"/>
          </p>
        </div>
      </text>
    </echo>