Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

#### Table of figures

< >
[Figure 121]
[Figure 122]
[Figure 123]
[Figure 124]
[Figure 125]
[Figure 126]
[Figure 127]
[Figure 128]
[Figure 129]
[Figure 130]
[Figure 131]
[Figure 132]
[Figure 133]
[Figure 134]
[Figure 135]
[Figure 136]
[Figure 137]
[Figure 138]
[Figure 139]
[Figure 140]
[Figure 141]
[Figure 142]
[Figure 143]
[Figure 144]
[Figure 145]
[Figure 146]
[Figure 147]
[Figure 148]
[Figure 149]
[Figure 150]
< >
page |< < (39) of 213 > >|
18939DE CENTRO GRAVIT. SOLID. dem, cuius baſis eſt quadratum a b c d, & &
in
pyramidem, cuius eadé baſis, altitudoq;
f g; ut ſint e g,
g
f ſemidiametri ſphæræ, &
Cũigitur g ſit ſphæ-
centrum, erit etiam centrum circuli, qui circa quadratũ
a
b c d deſcribitur:
& & pyra
midis
a b c d f axis f g.

ponendoq;
ratione
ipſius
g k.
quod cum e
g
, g f ſintæquales, &
ergo ex quar
ta
propoſitione primi
libri
Archimedis de cẽ-
tro
grauitatis planorũ,
totius
octahedri, quod
ex
dictis pyramidibus
conſtat
, centrum graui
tatis
erit punctum g idem, quodipſius ſphæræ centrum.
Sit icoſahedrum a d deſcriptum in ſphæra, cuius centrū
ſit
g.
Dico g ipſius icoſahedri grauitatis eſſe centrum. Si
enim
ab angnlo a per g ducatur rectalinea uſque ad ſphæ
ſuperficiem;
ſitq; una aliqua baſis icoſahedri tri-
angulum
a b c:
&