Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of figures

< >
[121. Figure]
[122. Figure]
[123. Figure]
[124. Figure]
[125. Figure]
[126. Figure]
[127. Figure]
[128. Figure]
[129. Figure]
[130. Figure]
[131. Figure]
[132. Figure]
[133. Figure]
[134. Figure]
[135. Figure]
[136. Figure]
[137. Figure]
[138. Figure]
[139. Figure]
[140. Figure]
[141. Figure]
[142. Figure]
[143. Figure]
[144. Figure]
[145. Figure]
[146. Figure]
[147. Figure]
[148. Figure]
[149. Figure]
[150. Figure]
< >
page |< < of 213 > >|
FED. COMMANDINI
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="95">
          <pb file="0202" n="202" rhead="FED. COMMANDINI"/>
          <p>
            <s xml:space="preserve">ABSCINDATVR à portione conoidis rectanguli
              <lb/>
            a b c alia portio e b f, plano baſi æquidiſtante: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">eadem
              <lb/>
            portio ſecetur alio plano per axem; </s>
            <s xml:space="preserve">ut ſuperficiei ſectio ſit
              <lb/>
            parabole a b c: </s>
            <s xml:space="preserve">planorũ portiones abſcindentium rectæ
              <lb/>
            lineæ a c, e f: </s>
            <s xml:space="preserve">axis autem portionis, & </s>
            <s xml:space="preserve">ſectionis diameter
              <lb/>
            b d; </s>
            <s xml:space="preserve">quam linea e fin puncto g ſecet. </s>
            <s xml:space="preserve">Dico portionem co-
              <lb/>
            noidis a b c ad portionem e b f duplam proportionem ha-
              <lb/>
            bere eius, quæ eſt baſis a c ad baſim e f; </s>
            <s xml:space="preserve">uel axis d b ad b g
              <lb/>
            axem. </s>
            <s xml:space="preserve">Intelligantur enim duo coni, ſeu coni portiones
              <lb/>
            a b c, e b f, eãdem baſim, quam portiones conoidis, & </s>
            <s xml:space="preserve">æqua
              <lb/>
            lem habentes altitudinem. </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">quoniam a b c portio conoi
              <lb/>
            dis ſeſquialtera eſt coni, ſeu portionis coni a b c; </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">portio
              <lb/>
            e b f coniſeu portionis coni e b feſt ſeſquialtera, quod de-
              <lb/>
              <anchor type="figure" xlink:label="fig-0202-01a" xlink:href="fig-0202-01"/>
            monſtrauit Archimedes in propoſitionibus 23, & </s>
            <s xml:space="preserve">24 libri
              <lb/>
            de conoidibus, & </s>
            <s xml:space="preserve">ſphæroidibus: </s>
            <s xml:space="preserve">erit conoidis portio ad
              <lb/>
            conoidis portionem, ut conus ad conum, uel ut coni por-
              <lb/>
            tio ad coni portionem. </s>
            <s xml:space="preserve">Sed conus, uel coni portio a b c ad
              <lb/>
            conum, uel coni portionem e b f compoſitam proportio-
              <lb/>
            nem habet ex proportione baſis a c ad baſim e f, & </s>
            <s xml:space="preserve">ex pro-
              <lb/>
            portione altitudinis coni, uel coni portionis a b c ad alti-
              <lb/>
            tudinem ipſius e b f, ut nos demonſtrauimus in com men-
              <lb/>
            tariis in undecimam propoſitionem eiuſdem libri A rchi-
              <lb/>
            medis: </s>
            <s xml:space="preserve">altitudo autem ad altitudinem eſt, ut axis ad axem.
              <lb/>
            </s>
            <s xml:space="preserve">quod quidem in conis rectis perſpicuum eſt, in ſcalenis ue</s>
          </p>
        </div>
      </text>
    </echo>