Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of figures

< >
< >
page |< < of 213 > >|
FED. COMMANDINI
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="73">
          <p>
            <s xml:space="preserve">
              <pb file="0134" n="134" rhead="FED. COMMANDINI"/>
            t u, x y ipſi g h æquidiſtare. </s>
            <s xml:space="preserve">Et quoniam triangula, quæ
              <lb/>
            fiunt à lineis K y, y u, u s, s h æqualia ſuntinter ſe, & </s>
            <s xml:space="preserve">ſimilia
              <lb/>
            triangulo K m h: </s>
            <s xml:space="preserve">habebit triangulum K m h ad triangulũ
              <lb/>
              <anchor type="note" xlink:label="note-0134-01a" xlink:href="note-0134-01"/>
            K δ y duplam proportionem eius, quæ eſt lineæ k h ad K y.
              <lb/>
            </s>
            <s xml:space="preserve">ſed _K_ h poſita eſt quadrupla ipſius k y. </s>
            <s xml:space="preserve">ergo triangulum
              <lb/>
            κ m h ad triangulum _K_ δ y eãdem proportionem habebit,
              <lb/>
            quam ſexdecim ad unũ & </s>
            <s xml:space="preserve">ad quatuor triangula k δ y, y u,
              <lb/>
            u s, s α h habebit eandem, quam fexdecim ad quatuor, hoc
              <lb/>
            eſt quam h K ad κ y: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">ſimiliter eandem habere demonſtra
              <lb/>
            bitur trian-
              <lb/>
              <anchor type="figure" xlink:label="fig-0134-01a" xlink:href="fig-0134-01"/>
            gulum κ m g
              <lb/>
            ad quatuor
              <lb/>
            triãgula K δ
              <lb/>
            x, x γ t, t β r,
              <lb/>
            r z g. </s>
            <s xml:space="preserve">quare
              <lb/>
              <anchor type="note" xlink:label="note-0134-02a" xlink:href="note-0134-02"/>
            totum trian
              <lb/>
            gulum K g h
              <lb/>
            ad omnia tri
              <lb/>
            angula g z r,
              <lb/>
            r β t, t γ x, x δ
              <lb/>
            _K_, K δ y, y u,
              <lb/>
            u s, s α h ita
              <lb/>
            erit, ut h κ a d
              <lb/>
            k y, hoc eſt
              <lb/>
            ut h m ad m
              <lb/>
            q. </s>
            <s xml:space="preserve">Si igitur in
              <lb/>
            triangulis a b c, d e f deſcribantur figuræ ſimiles ei, quæ de-
              <lb/>
            ſcripta eſt in g h K triangulo: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">per lineas ſibi reſp onden-
              <lb/>
            tes plana ducantur: </s>
            <s xml:space="preserve">totum priſma a f diuiſum eritin tria
              <lb/>
            ſolida parallelepipeda y γ, u β, s z, quorum baſes ſunt æ qua
              <lb/>
            les & </s>
            <s xml:space="preserve">ſimiles ipſis parallelogrammis y γ, u β, s z: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">in octo
              <lb/>
            priſmata g z r, r β t, t γ x, x δ K, κ δ y, y u, u s, s α h: </s>
            <s xml:space="preserve">quorum
              <lb/>
            item baſes æquales, & </s>
            <s xml:space="preserve">ſimiles ſunt dictis triangulis; </s>
            <s xml:space="preserve">altitu-
              <lb/>
            do autem in omnibus, totius priſmatis altitudini æ qualis.</s>
            <s xml:space="preserve"/>
          </p>
        </div>
      </text>
    </echo>