Salusbury, Thomas, Mathematical collections and translations (Tome I), 1667

Table of figures

< >
[Figure 191]
[Figure 192]
[Figure 193]
[Figure 194]
[Figure 195]
[Figure 196]
[Figure 197]
[Figure 198]
[Figure 199]
[Figure 200]
[Figure 201]
[Figure 202]
[Figure 203]
[Figure 204]
[Figure 205]
[Figure 206]
[Figure 207]
[Figure 208]
[Figure 209]
[Figure 210]
[Figure 211]
[Figure 212]
[Figure 213]
[Figure 214]
[Figure 215]
[Figure 216]
[Figure 217]
[Figure 218]
[Figure 219]
[Figure 220]
< >
page |< < of 701 > >|
    <archimedes>
      <text>
        <body>
          <chap>
            <p type="main">
              <s>
                <pb xlink:href="040/01/198.jpg" pagenum="180"/>
              but that the diminution of the ſame velocity, dependent on the
                <lb/>
              diminution of the gravity of the moveable (which vvas the ſecond
                <lb/>
              cauſe) doth alſo obſerve the ſame proportion, doth not ſo plainly
                <lb/>
              appear, And vvho ſhall aſſure us that it doth not proceed
                <lb/>
              ding to the proportion of the lines intercepted between the ſecant,
                <lb/>
              and the circumference; or vvhether vvith a greater proportion?</s>
            </p>
            <p type="main">
              <s>SALV. </s>
              <s>I have aſſumed for a truth, that the velocities of
                <lb/>
              bles deſcending naturally, vvill follovv the proportion of their
                <lb/>
              vities, with the favour of
                <emph type="italics"/>
              Simplicius,
                <emph.end type="italics"/>
              and of
                <emph type="italics"/>
              Ariſtotle,
                <emph.end type="italics"/>
              who doth
                <lb/>
              in many places affirm the ſame, as a propoſition manifeſt: You,
                <lb/>
              in favour of my adverſary, bring the ſame into queſtion, and ſay
                <lb/>
              that its poſſible that the velocity increaſeth with greater
                <lb/>
              tion, yea and greater
                <emph type="italics"/>
              in infinitum
                <emph.end type="italics"/>
              than that of the gravity; ſo that
                <lb/>
              all that hath been ſaid falleth to the ground: For maintaining
                <lb/>
              whereof, I ſay, that the proportion of the velocities is much leſſe
                <lb/>
              than that of the gravities; and thereby I do not onely ſupport
                <lb/>
              but confirme the premiſes. </s>
              <s>And for proof of this I appeal unto
                <lb/>
              experience, which will ſhew us, that a grave body, howbeit thirty
                <lb/>
              or fourty times bigger then another; as for example, a ball of
                <lb/>
              lead, and another of ſugar, will not move much more than twice
                <lb/>
              as faſt. </s>
              <s>Now if the projection would not be made, albeit the
                <lb/>
              locity of the cadent body ſhould diminiſh according to the
                <lb/>
              portion of the gravity, much leſſe would it be made ſo long as the
                <lb/>
              velocity is but little diminiſhed, by abating much from the
                <lb/>
              ty. </s>
              <s>But yet ſuppoſing that the velocity diminiſheth with a
                <lb/>
              tion much greater than that wherewith the gravity decreaſeth, nay
                <lb/>
              though it were the ſelf-ſame wherewith thoſe parallels conteined
                <lb/>
              between the tangent and circumference do decreaſe, yet cannot I
                <lb/>
              ſee any neceſſity why I ſhould grant the projection of matters of
                <lb/>
              never ſo great levity; yea I farther averre, that there could no ſuch
                <lb/>
              projection follow, meaning alwayes of matters not properly and
                <lb/>
              abſolutely light, that is, void of all gravity, and that of their own
                <lb/>
              natures move upwards, but that deſcend very ſlowly, and
                <lb/>
              have very ſmall gravity. </s>
              <s>And that which moveth me ſo to think
                <lb/>
              is, that the diminution of gravity, made according to the
                <lb/>
              tion of the parallels between the tangent and the circumference,
                <lb/>
              hath for its ultimate and higheſt term the nullity of weight, as thoſe
                <lb/>
              parallels have for their laſt term of their diminution the contact it
                <lb/>
              ſelf, which is an indiviſible point: Now gravity never diminiſheth
                <lb/>
              ſo far as to its laſt term, for then the moveable would ceaſe to be
                <lb/>
              grave; but yet the ſpace of the reverſion of the project to the
                <lb/>
              circumference is reduced to the ultimate minuity, which is when
                <lb/>
              the moveable reſteth upon the circumference in the very point of
                <lb/>
              contact; ſo as that to return thither it hath no need of ſpace:
                <lb/>
              and therefore let the propenſion to the motion of deſcent be </s>
            </p>
          </chap>
        </body>
      </text>
    </archimedes>