Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of figures

< >
[Figure 21]
[Figure 22]
[Figure 23]
[Figure 24]
[Figure 25]
[Figure 26]
[Figure 27]
[Figure 28]
[Figure 29]
[Figure 30]
[Figure 31]
[Figure 32]
[Figure 33]
[Figure 34]
[Figure 35]
[Figure 36]
[Figure 37]
[Figure 38]
[Figure 39]
[Figure 40]
[Figure 41]
[Figure 42]
[Figure 43]
[Figure 44]
[Figure 45]
[Figure 46]
[Figure 47]
[Figure 48]
[Figure 49]
[Figure 50]
< >
page |< < (6) of 213 > >|
236DE IIS QVAE VEH. IN AQVA.
COMMENTARIVS.
AT ucro ea, quæ feruntur deorſum, ſecundum perpendicula-
rem, quæ per centrum grauit atis ipſorum ducitur, ſimiliter ferri,
uel tanquam notum, uel ut ab alijs poſitum prætermiſit.
PROPOSITIO VIII.
SI aliqua magnitudo ſolida leuior humido,
11A quæ figuram portionis ſphæræ habeat, in humi-
22B dum demittatur, ita vt baſis portionis non tan-
gat humidum:
figura inſidebit recta, ita vt axis
portionis ſit ſecundum perpendicularem.
Et ſi
ab aliquo inclinetur figura, vt baſis portionis hu-
midum cõtingat;
non manebit inclinata ſi demit
tatur, ſed recta reſtituetur.
[INTELLIGATVR quædam magnitudo, qualis
33Suppleta
a Federi-
co Cõm.
dicta eſt, in humidum demiſſa:
& ducatur planum per axẽ
portionis, &
per terræ
12[Figure 12] centrum, ut ſit ſuperfi-
ciei humidi ſectio circũ
ferentia a b c d:
& figu-
ræ ſectio e f h circunfe-
rentia:
ſit autem e h
recta linea;
& f t axis
portionis.
Si igitur in-
clinetur figura, ita ut a-
xis portionis f t non ſit
ſecundum perpendicu-
larem.
demonſtrandum eſt, non manere ipſam figu-
ram;
ſed in rectum reſtitui. Itaque centrum ſphæræ

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index