Salusbury, Thomas, Mathematical collections and translations (Tome I), 1667

Table of figures

< >
[Figure 211]
[Figure 212]
[Figure 213]
[Figure 214]
[Figure 215]
[Figure 216]
[Figure 217]
[Figure 218]
[Figure 219]
[Figure 220]
[Figure 221]
[Figure 222]
[Figure 223]
[Figure 224]
[Figure 225]
[Figure 226]
[Figure 227]
[Figure 228]
[Figure 229]
[Figure 230]
[Figure 231]
[Figure 232]
[Figure 233]
[Figure 234]
[Figure 235]
[Figure 236]
[Figure 237]
[Figure 238]
[Figure 239]
[Figure 240]
< >
page |< < of 701 > >|
    <archimedes>
      <text>
        <body>
          <chap>
            <pb xlink:href="040/01/1036.jpg" pagenum="341"/>
            <p type="head">
              <s>PROP. IV. THEOR. IV.</s>
            </p>
            <p type="main">
              <s>
                <emph type="italics"/>
              Solid Magnitudes that are lighter than the Liquid,
                <lb/>
              being demitted into the ſetled Liquid, will not total­
                <lb/>
              ly ſubmerge in the ſame, but ſome part thereof will
                <lb/>
              lie or ſtay above the Surface of the Liquid.
                <emph.end type="italics"/>
              </s>
            </p>
            <p type="main">
              <s>NIC. </s>
              <s>In this fourth
                <emph type="italics"/>
              Propoſition
                <emph.end type="italics"/>
              it is concluded, that every Body or Solid that is
                <lb/>
              lighter (as to Specifical Gravity) than the
                <emph type="italics"/>
              L
                <emph.end type="italics"/>
              iquid, being put into the
                <lb/>
                <emph type="italics"/>
              L
                <emph.end type="italics"/>
              iquid, will not totally ſubmerge in the ſame, but that ſome part of it
                <lb/>
              will ſtay and appear without the
                <emph type="italics"/>
              L
                <emph.end type="italics"/>
              iquid, that is above its Surface.</s>
            </p>
            <p type="main">
              <s>For ſuppoſing, on the contrary, that it were poſſible for a Solid
                <lb/>
              more light than the Liquid, being demitted in the Liquid to ſub­
                <lb/>
              merge totally in the ſame, that is, ſo as that no part thereof re­
                <lb/>
              maineth above, or without the ſaid Liquid, (evermore ſuppoſing
                <lb/>
              that the Liquid be ſo conſtituted as that it be not moved,) let us
                <lb/>
              imagine any Plane produced thorow the Center of the Earth, tho­
                <lb/>
              row the Liquid, and thorow that Solid Body: and that the Surface
                <lb/>
              of the Liquid is cut by this Plane according to the Circumference
                <lb/>
              A
                <emph type="italics"/>
              B
                <emph.end type="italics"/>
              G, and the Solid
                <emph type="italics"/>
              B
                <emph.end type="italics"/>
              ody according to the Figure R; and let the
                <lb/>
              Center of the Earth be K. </s>
              <s>And let there be imagined a Pyramid
                <lb/>
                <figure id="id.040.01.1036.1.jpg" xlink:href="040/01/1036/1.jpg" number="232"/>
                <lb/>
              that compriſeth the Figure
                <lb/>
              R, as was done in the pre.
                <lb/>
              </s>
              <s>cedent, that hath its Ver­
                <lb/>
              tex in the Point K, and let
                <lb/>
              the Superficies of that
                <lb/>
              Pyramid be cut by the
                <lb/>
              Superficies of the Plane
                <lb/>
              A
                <emph type="italics"/>
              B
                <emph.end type="italics"/>
              G, according to A K
                <lb/>
              and K
                <emph type="italics"/>
              B
                <emph.end type="italics"/>
              . </s>
              <s>And let us ima­
                <lb/>
              gine another Pyramid equal and like to this, and let its Superficies
                <lb/>
              be cut by the Superficies A
                <emph type="italics"/>
              B
                <emph.end type="italics"/>
              G according to K
                <emph type="italics"/>
              B
                <emph.end type="italics"/>
              and K
                <emph type="italics"/>
              G
                <emph.end type="italics"/>
              ; and let
                <lb/>
              the Superficies of another Sphære be deſcribed in the Liquid, upon
                <lb/>
              the Center K, and beneath the Solid R; and let that be cut by the
                <lb/>
              ſame Plane according to
                <emph type="italics"/>
              X
                <emph.end type="italics"/>
              O P. And, laſtly, let us ſuppoſe ano­
                <lb/>
              ther Solid taken ^{*} from the Liquid, in this ſecond Pyramid, which
                <lb/>
                <arrow.to.target n="marg1133"/>
                <lb/>
              let be H, equal to the Solid R. </s>
              <s>Now the parts of the Liquid, name­
                <lb/>
              ly, that which is under the Spherical Superficies that proceeds ac­
                <lb/>
              cording to the Superficies or Circumference
                <emph type="italics"/>
              X
                <emph.end type="italics"/>
              O, in the firſt Py­
                <lb/>
              ramid, and that which is under the Spherical Superficies that pro­
                <lb/>
              ceeds according to the Circumference O P, in the ſecond Pyramid,
                <lb/>
              are equijacent, and contiguous, but are not preſſed equally; for </s>
            </p>
          </chap>
        </body>
      </text>
    </archimedes>