Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of figures

< >
[Figure 31]
[Figure 32]
[Figure 33]
[Figure 34]
[Figure 35]
[Figure 36]
[Figure 37]
[Figure 38]
[Figure 39]
[Figure 40]
[Figure 41]
[Figure 42]
[Figure 43]
[Figure 44]
[Figure 45]
[Figure 46]
[Figure 47]
[Figure 48]
[Figure 49]
[Figure 50]
[Figure 51]
[Figure 52]
[Figure 53]
[Figure 54]
[Figure 55]
[Figure 56]
[Figure 57]
[Figure 58]
[Figure 59]
[Figure 60]
< >
page |< < (8) of 213 > >|
1278DE CENTRO GRAVIT. SOLID. æquidiſtant autem c g o, m n p. ergo parallelogrãma ſunt
o n, g m, &
linea m n æqualis c g; & n p ipſi g o. aptatis igi-
tur K l m, a b c triãgulis, quæ æqualia &
ſimilia sũt; linea m p
in c o, &
punctum n in g cadet. Quòd cũ g ſit centrum gra-
uitatis trianguli a b c, &
n trianguli K l m grauitatis cen-
trum erit id, quod demonſtrandum relinquebatur.
Simili
ratione idem contingere demonſtrabimus in aliis priſma-
tibus, ſiue quadrilatera, ſiue plurilatera habeant plana,
quæ opponuntur.
COROLLARIVM.
Exiam demonſtratis perſpicue apparet, cuius
Iibet priſmatis axem, parallelogrammorum lat eri
bus, quæ ab oppoſitis planis ducũtur æquidiſtare.
THEOREMA VI. PROPOSITIO VI.
Cuiuslibet priſmatis centrum grauitatis eſt in
plano, quod oppoſitis planis æquidiſtans, reli-
quorum planorum latera bifariam diuidit.
Sit priſma, in quo plana, quæ opponuntur ſint trian-
gula a c e, b d f:
& parallelogrammorum latera a b, c d,
e f bifariam diuidãtur in punctis g h _K_:
per diuiſiones au-
tem planum ducatur;
cuius ſectio figura g h _K_. eritlinea
1133. primi g h æquidiſtans lineis a c, b d &
h k ipſis c e, d f. quare ex
decimaquinta undecimi elementorum, planum illud pla
nis a c e, b d f æquidiſtabit, &
ſaciet ſectionem figu-
225. huius ram ipſis æqualem, &
ſimilem, ut proxime demonſtra-
uimus.
Dico centrum grauitatis priſmatis eſſe in plano
g h K.
Si enim fieri poteſt, ſit eius centrum l: & ducatur
l m uſque ad planum g h K, quæ ipſi a b æquidiſtet.

Text layer

  • Dictionary

Text normalization

  • Original
  • Regularized
  • Normalized

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index