Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of figures

< >
[Figure 31]
[Figure 32]
[Figure 33]
[Figure 34]
[Figure 35]
[Figure 36]
[Figure 37]
[Figure 38]
[Figure 39]
[Figure 40]
[Figure 41]
[Figure 42]
[Figure 43]
[Figure 44]
[Figure 45]
[Figure 46]
[Figure 47]
[Figure 48]
[Figure 49]
[Figure 50]
[Figure 51]
[Figure 52]
[Figure 53]
[Figure 54]
[Figure 55]
[Figure 56]
[Figure 57]
[Figure 58]
[Figure 59]
[Figure 60]
< >
page |< < (11) of 213 > >|
3311DE IIS QVAE VEH. IN AQVA. cundum eam, quæ per g, deorſum ferctur; & non ita mane
bit ſolidum a p o l:
nam quod eſt ad a feretur ſurſum; &
quod ad b deorſum, donec n o ſecundum perpendicu-
larem conſtituatur.
]
COMMENTARIVS.
D_esideratvr_ propoſitionis huius demonstratio, quam nos
etiam ad Archimedis figuram appoſite restituimus, commentarijs-
que illustrauimus.
_Recta portio conoidis rectanguli, quando axem habue_
11A _rit minorem, quàm ſeſquialterum eius, quæ uſque ad axẽ]_
In tranſlatione mendoſe legebatur.
maiorem quàm ſeſquialterum:
& ita legebatur in ſequenti propoſitione. est autem recta portio co
noidis, quæ plano ad axem recto abſcinditur:
eâmque rectam tunc
conſiſtere dicimus, quando planum abſcindens, uidelicet baſis pla-
num, ſuperficiei humidi æquidiſtans fuerit.
Quæ erit ſectionis i p o s diameter, & axis portionis in
22B humido demerſæ] _ex_ 46 _primi conicorum Apollonij:
uel ex co-_
_rollario_ 51 _eiuſdem_.
_Sitque ſolidæ magnitudinis a p o l grauitatis centrum r,_
33C _ipſius uero i p o s centrum ſit b.
]_ Portionis enim conoidis
rectanguli centrum grauitatis eſt in axe, quem ita diuidit, ut pars
eius, quæ ad uerticem terminatur, reliquæ partis, quæ ad baſim, ſit
dupla:
quod nos in libro de centro grauitatis ſolidorum propoſitio-
ne 29 demonstrauimus.
Cum igitur portionis a p o l centrum gra-
uitatis ſit r, erit o r dupla r n:
& propterea n o ipſius o r ſeſqui-
altera.
Eadem ratione b centrum grauitatis portionis i p o s est in
axe p f, ita ut p b dupla ſit b f.
_Etiuncta b r producatur ad g, quod ſit centrum graui_
44D _tatis reliquæ figuræ i s l a]_ Si enim linea b r in g producta, ha
beat g r ad r b proportionem eam, quam conoidis portio i p o s ad
reliquam figuram, quæ ex humidi ſuperficie extat:
erit punctum g
ipſius grauitatis centrum, ex octaua Archimedis.

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index