Cardano, Geronimo, Offenbarung der Natur und natürlicher dingen auch mancherley subtiler würckungen

Table of figures

< >
[31. Figure]
[32. Figure]
[33. Figure: lapidis longitudo (Variables: C E D A F B)]
[34. Figure (Variables: a k @ c d g f e b)]
[35. Figure (Variables: d b e c a f g)]
[36. Figure (Variables: a d b c)]
[37. Figure (Variables: a c b d e)]
[38. Figure (Variables: f a d b r c g)]
[39. Figure (Variables: f a d ſ b c g)]
[40. Figure (Variables: A L H F C E G D K M B)]
[41. Figure]
[42. Figure: Ecliptica ſept@t. linea refleya. Erratira @@ ſectio. Ecliptica merid. (Variables: A B)]
[43. Figure (Variables: f m @ o e q h k l a n u c d g)]
[44. Figure (Variables: a k g b @ @ @ l e m f q p o n b)]
[45. Figure (Variables: a c d b)]
[46. Figure (Variables: C B A F D E G)]
[47. Figure: Axis primus. Axis tert s. Axis ſecundg Turris horologij uicem prim@ axis gereus. cla@@s verſa @lis. Rota horologij principalis. Fums. Capſula molę. Mola (Variables: XXXV Q P O VII N LXX III M L R H LXXXX VI K G XV F D C E A B)]
[48. Figure]
[49. Figure (Variables: f g d b a c e h m k)]
[50. Figure (Variables: l f e i g h)]
[51. Figure (Variables: a b c d)]
[52. Figure: Rotacochlearis.]
[53. Figure (Variables: D C A E B)]
[54. Figure (Variables: D F C A B)]
[55. Figure (Variables: D D F F C E A A B B)]
[56. Figure]
[57. Figure (Variables: E C B A f D)]
[58. Figure: Meridies Oriens. Styl@ lap. Her. Arge@ cule us. Occidens Septentrio (Variables: A B C D E F G H K L M N O P Q R S T V X Y Z ?? ℞ {στ} θ)]
[59. Figure (Variables: D C B A)]
[60. Figure (Variables: L H G H K)]
< >
page |< < (ccccxxv) of 997 > >|
ſachen/ Das neündt bůch.
    <echo version="1.0RC">
      <text xml:lang="de" type="free">
        <div type="section" level="1" n="55">
          <p>
            <s xml:space="preserve">
              <pb o="ccccxxv" file="0481" n="481" rhead="ſachen/ Das neündt bůch."/>
            x tag/ vnd vermeinet man alſo ſie růwẽ/ ſie lauffen aber/ weil ſie allgemach
              <lb/>
            dahar fahrent. </s>
            <s xml:space="preserve">diſes iſt auch eben das wölches wir hieoben haben angezeigt.</s>
            <s xml:space="preserve"/>
          </p>
          <p>
            <s xml:space="preserve">Wann man aber ein ring will machen/ der zwyfacher oder drey
              <lb/>
              <anchor type="figure" xlink:label="fig-0481-01a" xlink:href="fig-0481-01"/>
            facher geſtalt vmblauffe/ můß man einen in den anderen ſetzen/
              <lb/>
            oder auff einen centrum/ oder einen anderen/ dann es ligt nicht
              <lb/>
            daran. </s>
            <s xml:space="preserve">damitt auch die alle nitt mögend fürfahren dañ an ein ort/
              <lb/>
            vnnd nitt möchtend widerumb keeren. </s>
            <s xml:space="preserve">Als laß den ring A B ſein/ vnd ein
              <lb/>
            anderer wider darein geſtoſſen C D. </s>
            <s xml:space="preserve">Ich will aber zů einem exempel/ det
              <lb/>
            ring beweg ſich mitt zweyen geleichen bewegungen/ als namlich der kreyß
              <lb/>
            A B auß dem Ain das K/ vnnd auß dem K in das B/ auch mitt ſeinem ei
              <lb/>
            genen lanff/ auß dem C in das M/ vnnd auß dem Min das D. </s>
            <s xml:space="preserve">Deßhalben
              <lb/>
            iſt bekanndt wann der für ſich ſelbs laufft auß dem C in das M/ vnnd das
              <lb/>
            Min D/ vnnd auch von dem ring abgefüret werde A B/ můßer an dem
              <lb/>
            ring A B hangen beleiben/ von wegen deß lauff auß dem A in K/ vnd auß
              <lb/>
            dem K in B. </s>
            <s xml:space="preserve">darum̃ mag der kreyß C D in dem kreyß A B bewegt werden/
              <lb/>
            auß dem C in das M/ vnnd M in D/ vnnd mag nitt bewegt werden durch
              <lb/>
            ein widerwertigen lauff.</s>
            <s xml:space="preserve"/>
          </p>
          <div type="float" level="2" n="28">
            <figure xlink:label="fig-0481-01" xlink:href="fig-0481-01a">
              <variables xml:space="preserve">l f e i g h</variables>
            </figure>
          </div>
          <p>
            <s xml:space="preserve">Diſes beſchicht aber alſo/ wann du die innere ſuperficien vnnd breitte A
              <lb/>
            B/ an wöllichem orth ſie das eck rüret/ hol macheſt/ vnd die klein zinckẽ all
              <lb/>
            gemach beſeytz auffſteigend/ von dem C in M/ vnnd von M in D. </s>
            <s xml:space="preserve">vnder
              <lb/>
            wöllicher der weytter theil von dem puncten das C D anrüret. </s>
            <s xml:space="preserve">wöllicher ge-
              <lb/>
            gen dẽ C ſthet iſt dieffer/ wie vyl dieffer ein halb hirßkörnlin iſt/ wölches an
              <lb/>
            zeigung das L bedeüttet. </s>
            <s xml:space="preserve">in dẽ oberen theil aber deß kreyß C D ſeind zwen
              <lb/>
            zincken E F vnd G H/ ſo da gegẽ überſthond/ wölche beſeytz bey dem E G
              <lb/>
            an dem kreyß ſthond. </s>
            <s xml:space="preserve">Sy ghond aber auß dem F vnd H harfür/ als wann
              <lb/>
            ſie den kreyß C D anrürten/ wie man in der erſten figur ſicht/ doch laſſend
              <lb/>
            ſie ſich biegen/ vnd habẽ ein höle in dem letſten circkel deß kreyß/ alſo wann
              <lb/>
            ſie zůſamen getrucket daß ſie den kreiß eigentlichen vollbringen. </s>
            <s xml:space="preserve">Wann di-
              <lb/>
            ſes alſo geordnet/ vnd ſich das C gegen dem M bewegt/ werden E F vnd G
              <lb/>
            H mit jren anfengen bewegt werden/ auch zůſamen getrucket/ vnd ſteigen
              <lb/>
            allgemach durch die concauitetẽ vnd höle L hinauff/ vnd habend alſo kein
              <lb/>
            hindernuß/ ſonder fahrend für. </s>
            <s xml:space="preserve">Wann du aber diſes wilt nach dem wider-
              <lb/>
            ſpil bewegen/ oder das A B vmbtreiben/ alſo daß das C D ſteyff vnnd vn-
              <lb/>
            beweglich beleibe/ daß das A gegen dem K fahre/ werden das F vnd H von
              <lb/>
            ſtundan in die runde höle A B fallen/ an wölchẽ orth ſie am dieffeſtẽ ſeind/
              <lb/>
            vnd mag der kreyß A B mit keinem gewalt vmbgetriben werden/ es nem̃e
              <lb/>
            dann den kreyß C D mit jm. </s>
            <s xml:space="preserve">es mag auch der kreyß C D wañ er vmblaufft/
              <lb/>
            den kreyß A B nit mit jm ziehen/ weil er von dem abgeſünderet/ vnd allge
              <lb/>
            mach fürfahret/ als vor bewiſen/ demnach weil das A B von den rederen ſo
              <lb/>
            daran ſthend hinderhalten/ von wölchem es bewegt wirt.</s>
            <s xml:space="preserve"/>
          </p>
          <p>
            <s xml:space="preserve">Nach ſeind zwey ſchwere ding vorhanden. </s>
            <s xml:space="preserve">Zů erſt wann wir wolten dz der
              <lb/>
            kreiß A B durch ein widerwertigen lauff bewegt wurde/ vnd doch das C D
              <lb/>
            ſo bey ihm ſthet/ mit jm zuge/ ſo ſag ich daß ſolliches on zincken vnd höle be
              <lb/>
            ſchehe/ wann man den kreyß C D ſteyff in den kreyß A B richtet.</s>
            <s xml:space="preserve"/>
          </p>
          <p>
            <s xml:space="preserve">Das ander iſt gemein beiden leüffen/ dem ſo wider einanderen/ oder ſo
              <lb/>
            ein geleichen lauff hat. </s>
            <s xml:space="preserve">dann was geſtalt C D den kreiß A B in gleicher be-
              <lb/>
            wegung nit mag mit jm ziehen/ dieweil es von der anderen rederẽ zincken/
              <lb/>
            cken/ ſo in es gerichtet/ verhinderet. </s>
            <s xml:space="preserve">alſo mag auch der kreyß A B den kreiß
              <lb/>
            </s>
          </p>
        </div>
      </text>
    </echo>