Cardano, Geronimo, Offenbarung der Natur und natürlicher dingen auch mancherley subtiler würckungen

Table of figures

< >
[31. Figure]
[32. Figure]
[33. Figure: lapidis longitudo (Variables: C E D A F B)]
[34. Figure (Variables: a k @ c d g f e b)]
[35. Figure (Variables: d b e c a f g)]
[36. Figure (Variables: a d b c)]
[37. Figure (Variables: a c b d e)]
[38. Figure (Variables: f a d b r c g)]
[39. Figure (Variables: f a d ſ b c g)]
[40. Figure (Variables: A L H F C E G D K M B)]
[41. Figure]
[42. Figure: Ecliptica ſept@t. linea refleya. Erratira @@ ſectio. Ecliptica merid. (Variables: A B)]
[43. Figure (Variables: f m @ o e q h k l a n u c d g)]
[44. Figure (Variables: a k g b @ @ @ l e m f q p o n b)]
[45. Figure (Variables: a c d b)]
[46. Figure (Variables: C B A F D E G)]
[47. Figure: Axis primus. Axis tert s. Axis ſecundg Turris horologij uicem prim@ axis gereus. cla@@s verſa @lis. Rota horologij principalis. Fums. Capſula molę. Mola (Variables: XXXV Q P O VII N LXX III M L R H LXXXX VI K G XV F D C E A B)]
[48. Figure]
[49. Figure (Variables: f g d b a c e h m k)]
[50. Figure (Variables: l f e i g h)]
[51. Figure (Variables: a b c d)]
[52. Figure: Rotacochlearis.]
[53. Figure (Variables: D C A E B)]
[54. Figure (Variables: D F C A B)]
[55. Figure (Variables: D D F F C E A A B B)]
[56. Figure]
[57. Figure (Variables: E C B A f D)]
[58. Figure: Meridies Oriens. Styl@ lap. Her. Arge@ cule us. Occidens Septentrio (Variables: A B C D E F G H K L M N O P Q R S T V X Y Z ?? ℞ {στ} θ)]
[59. Figure (Variables: D C B A)]
[60. Figure (Variables: L H G H K)]
< >
page |< < (ccccxxvij) of 997 > >|
ſachen/ Das neündt bůch.
    <echo version="1.0RC">
      <text xml:lang="de" type="free">
        <div type="section" level="1" n="55">
          <p>
            <s xml:space="preserve">
              <pb o="ccccxxvij" file="0483" n="483" rhead="ſachen/ Das neündt bůch."/>
            zincken hat/ vnnd das ander lxxij wegelin mit ſechs zinckẽ/ alſo wirt ein ye-
              <lb/>
            der zincken am anderen rad zwen tag halten.</s>
            <s xml:space="preserve"/>
          </p>
          <figure>
            <description style="it" xml:space="preserve">Rotacochlearis.</description>
          </figure>
          <p>
            <s xml:space="preserve">Darumb wöllend wir ein rad mitt Cxv zincken machen/
              <lb/>
            doch in geſtalt einer ſchnecken/ alſo daß ye der hunderſt vnd
              <lb/>
            fünffzehendeſt zincken/ einem halben deß erſtenn entgegen
              <lb/>
              <anchor type="note" xlink:label="note-0483-01a" xlink:href="note-0483-01"/>
            kommen/ wie du ſichſt.</s>
            <s xml:space="preserve"/>
          </p>
          <div type="float" level="2" n="30">
            <note position="right" xlink:label="note-0483-01" xlink:href="note-0483-01a" xml:space="preserve">Snecken rad.</note>
          </div>
          <p>
            <s xml:space="preserve">Weil ſolliches nun bedacht/ wöllen wir ſetzen als wann
              <lb/>
            wir im ſinn eines geſtirns lauff zůbeſtimmenn/ ſo auß
              <lb/>
            dreyen widerwertigenn lauffenn zůſammen geſetzet. </s>
            <s xml:space="preserve">Alſo daß die ebene
              <lb/>
            kreyß A ſeyend/ inn wöllichem B/ vnnd im ſelbigen auch das C ſtande.
              <lb/>
            </s>
            <s xml:space="preserve">wann nun diſe durch widerwertige bewegungen lauffend/ ſo můß man ſie
              <lb/>
            auff zweyerley centros ſetzen. </s>
            <s xml:space="preserve">Ich nennen die ebene kreyß allwegen diſe
              <lb/>
            circkel/ ſo ein geſtalt der rederenn habend/ doch habend ſie ein vnderſcheid
              <lb/>
            von denen/ dann die reder habend zincken zů ring harumb/ vnnd ſeind in
              <lb/>
            mitten lär/ aber die kreyß habend kein zincken/ vnnd ſeind in der mitte bey
              <lb/>
            einanderen. </s>
            <s xml:space="preserve">widerumb ſeind ſie auch von den circklen vnderſcheiden/ dz die
              <lb/>
            orbes vnnd kreyß als dick wie ein ſchwert/ oder ein klein größer ſeind. </s>
            <s xml:space="preserve">Es
              <lb/>
            ſeind auch die ebene kreyß von den glantzen vnderſcheiden/ dañ es ſeind nit
              <lb/>
            kuglen/ darzů nit allenthalben rund/ ſonder an zweyen orthen eben/ dar-
              <lb/>
            umb hab ich kein komlicheren namen dann ebene kreyß erfunden.</s>
            <s xml:space="preserve"/>
          </p>
          <p>
            <s xml:space="preserve">Weil auch diſe kreyß vmblauffen/ hat man ein an
              <lb/>
              <anchor type="figure" xlink:label="fig-0483-02a" xlink:href="fig-0483-02"/>
            deren kreyß ſo ſteiff ſthet/ vnnd die anderen ein-
              <lb/>
            ſchleüßt müßend machen/ wöllicher E ſeye/ auß
              <lb/>
            wölches vergleichung wir der anderen lauff durch
              <lb/>
            den zeiger vnnd gelegenheit deß ſternẽ D vermer
              <lb/>
            cken/ ſo auß allen leüffen beſtimment. </s>
            <s xml:space="preserve">Deßhalben
              <lb/>
            wöllend wir zů erſten reder machen ſo das C bewe
              <lb/>
            gend/ demnach reder machen ſo das B bewegen/
              <lb/>
            mitt dem gantzenn laſt rederenn/ ſo das C bewe-
              <lb/>
            gen. </s>
            <s xml:space="preserve">dann wann die reder B/ allein das B bewegten/ vnnd den kreyß C ſo
              <lb/>
            darinnen eingeſchloſſen/ möchte C vonn ſeinen eigenen rederen nit bewegt
              <lb/>
            werden/ dañ die re{der} růweten/ vñ wurde dz C bewegt. </s>
            <s xml:space="preserve">Alſo füren auch die re-
              <lb/>
            der A die reder B zů ring harũb/ vñ nitt allein deß ſelbigen kreyß/ vnd deß
              <lb/>
            halben auch die reder C. </s>
            <s xml:space="preserve">Vnnd volgt diſes deß himmels lauff vnd ordnund
              <lb/>
            nach. </s>
            <s xml:space="preserve">doch thůnd die werckmeiſter den teglichen lauff nit darzů/ das iſt deß
              <lb/>
            kreiß A/ in den Planeten/ ſonder machend ein beſonderen teglichen lauff
              <lb/>
            in den Planeten. </s>
            <s xml:space="preserve">Darumb můß man in diſen allen nit allein der zeyt in be-
              <lb/>
            wegungen acht haben/ ſonder auch der größen an theilen/ vnnd die vnder
              <lb/>
            ſcheid/ nach wölchen ſie bewegt werden.</s>
            <s xml:space="preserve"/>
          </p>
          <div type="float" level="2" n="31">
            <figure xlink:label="fig-0483-02" xlink:href="fig-0483-02a">
              <variables xml:space="preserve">D C A E B</variables>
            </figure>
          </div>
          <p>
            <s xml:space="preserve">Wir wöllen aber nun anzeigen wie auß einem fürnem̃en lauff vyl andere
              <lb/>
            bewegungenn an theilen entſthen mögend. </s>
            <s xml:space="preserve">Wir habend bißhar eroffnet
              <lb/>
            daß drey gelegenheit/ vnd bey einem yeden zwo bewegung ſeyen die zů dem
              <lb/>
            orth oder von dem orth fahren.</s>
            <s xml:space="preserve"/>
          </p>
          <p>
            <s xml:space="preserve">Man mag aber nit zůmal die re{der} vnd wider
              <lb/>
              <anchor type="figure" xlink:label="fig-0483-03a" xlink:href="fig-0483-03"/>
            wertige leüff beſtim̃en/ ſon{der} allein zwiſchẽ jnẽ.
              <lb/>
            </s>
            <s xml:space="preserve">Als nãlich es ſey ein weglin o{der} leüfflin A B/ in
              <lb/>
            wölchẽ zů ring harũ zinckẽ ſeyẽ in zwifacher ord
              <lb/>
            nũg. </s>
            <s xml:space="preserve">dañ die auſſerẽ werdẽ beid ordnũg {der} wege-
              <lb/>
            </s>
          </p>
        </div>
      </text>
    </echo>