Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of figures

< >
[31. Figure]
[32. Figure]
[33. Figure]
[34. Figure]
[35. Figure]
[36. Figure]
[37. Figure]
[38. Figure]
[39. Figure]
[40. Figure]
[41. Figure]
[42. Figure]
[43. Figure]
[44. Figure]
[45. Figure]
[46. Figure]
[47. Figure]
[48. Figure]
[49. Figure]
[50. Figure]
[51. Figure]
[52. Figure]
[53. Figure]
[54. Figure]
[55. Figure]
[56. Figure]
[57. Figure]
[58. Figure]
[59. Figure]
[60. Figure]
< >
page |< < of 213 > >|
FED. COMMANDINI
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="91">
          <p>
            <s xml:space="preserve">
              <pb file="0184" n="184" rhead="FED. COMMANDINI"/>
            itemq; </s>
            <s xml:space="preserve">ſimilia triangula a b c, e f g; </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">a c d, e g h. </s>
            <s xml:space="preserve">idcir-
              <lb/>
            coq; </s>
            <s xml:space="preserve">latera ſibi ipſis reſpondentia eandem inter ſe ſe pro-
              <lb/>
            portionem ſeruant. </s>
            <s xml:space="preserve">Vt igitur duplum lateris a b unà
              <lb/>
            cum latere e f ad duplum lateris e f unà cum a b, ita eſt
              <lb/>
            duplum a d late-
              <lb/>
              <anchor type="figure" xlink:label="fig-0184-01a" xlink:href="fig-0184-01"/>
            ris unà cum late-
              <lb/>
            re e h ad duplum
              <lb/>
            e h unà cum a d:
              <lb/>
            </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">ita in aliis. </s>
            <s xml:space="preserve">
              <lb/>
            Rurſus fruſtum
              <lb/>
            a g ad pyramidẽ,
              <lb/>
            cuius eadem eſt
              <lb/>
            bafis, & </s>
            <s xml:space="preserve">æqualis
              <lb/>
            altitudo eandem
              <lb/>
            proportionẽ ha
              <lb/>
            bet, quam fruſtũ
              <lb/>
            l f ad pyramidẽ,
              <lb/>
            quæ eſt eadẽ ba-
              <lb/>
            ſi, & </s>
            <s xml:space="preserve">æquali alti-
              <lb/>
            tudine: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">ſimili-
              <lb/>
            ter quam l h fru-
              <lb/>
            ſtum ad pyrami-
              <lb/>
            dem, quæ ex ea-
              <lb/>
            dẽ baſi, & </s>
            <s xml:space="preserve">æquali
              <lb/>
            altitudine con-
              <lb/>
            ſtat. </s>
            <s xml:space="preserve">nam ſi inter
              <lb/>
            ipſas baſes me-
              <lb/>
            diæ proportio-
              <lb/>
            nales conſtituan
              <lb/>
            tur, tres baſes ſimul ſumptæ ad maiorem baſim in om-
              <lb/>
            nibus eodem modo ſe habebunt. </s>
            <s xml:space="preserve">Vnde fit, ut axes K l,
              <lb/>
            q r, t u à punctis p s x in eandem proportionem ſecen-
              <lb/>
            tur. </s>
            <s xml:space="preserve">ergo linea x s per p tranſibit: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">lineæ r u, s x, q t in-
              <lb/>
              <anchor type="note" xlink:label="note-0184-01a" xlink:href="note-0184-01"/>
            ter ſe æquidiſtantes erunt. </s>
            <s xml:space="preserve">Itaque cum fruſti a g latera pro-</s>
          </p>
        </div>
      </text>
    </echo>