Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of figures

< >
[Figure 51]
[Figure 52]
[Figure 53]
[Figure 54]
[Figure 55]
[Figure 56]
[Figure 57]
[Figure 58]
[Figure 59]
[Figure 60]
[Figure 61]
[Figure 62]
[Figure 63]
[Figure 64]
[Figure 65]
[Figure 66]
[Figure 67]
[Figure 68]
[Figure 69]
[Figure 70]
[Figure 71]
[Figure 72]
[Figure 73]
[Figure 74]
[Figure 75]
[Figure 76]
[Figure 77]
[Figure 78]
[Figure 79]
[Figure 80]
< >
page |< < (3) of 213 > >|
1173DE CENTRO GRAVIT. SOLID. cta b d in g puncto, ducatur c g; & protrahatur ad circuli
uſque circumferentiam;
quæ ſecet a e in h. Similiter conclu
demus c g per centrum circuli tranſire:
& bifariam ſecare
lineam a e;
itemq́; lineas b d, a e inter ſe æquidiſtantes eſſe.
Cumigitur c g per centrum circuli tranſeat; & ad punctũ
f perueniat neceſſe eſt:
quòd c d e f ſit dimidium circumfe
rentiæ circuli.
Quare in eadem
73[Figure 73] diametro c f erunt centra gra
1113. Archi
medis.
uitatis triangulorum b c d,
a f e, &
quadrilateri a b d e, ex
229. @iuſdé. quibus conſtat hexagonum a b
c d e f.
perſpicuum eſt igitur in
ipſa c f eſſe circuli centrum, &

centrum grauitatis hexagoni.
Rurſus ducta altera diametro
a d, eiſdem rationibus oſtende-
mus in ipſa utrumque cẽtrum
ineſſe.
Centrum ergo grauita-
tis hexagoni, &
centrum circuli idem erit.
Sit heptagonum a b c d e f g æquilaterum atque æquian
gulum in circulo deſcriptum:
74[Figure 74]& iungantur c e, b f, a g: di-
uiſa autem c e bifariam in pũ
cto h:
& iuncta d h produca-
tur in k.
non aliter demon-
ſtrabimus in linea d k eſſe cen
trum circuli, &
centrum gra-
uitatis trianguli c d e, &
tra-
peziorum b c e f, a b f g, hoc
eſt centrum totius heptago-
ni:
& rurſus eadem centra in
alia diametro cl ſimiliter du-
cta contineri.
Quare & centrum grauitatis heptagoni, &
centrum circuli in idem punctum conucniunt.
Eodem

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index