Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of figures

< >
[Figure 51]
[Figure 52]
[Figure 53]
[Figure 54]
[Figure 55]
[Figure 56]
[Figure 57]
[Figure 58]
[Figure 59]
[Figure 60]
[Figure 61]
[Figure 62]
[Figure 63]
[Figure 64]
[Figure 65]
[Figure 66]
[Figure 67]
[Figure 68]
[Figure 69]
[Figure 70]
[Figure 71]
[Figure 72]
[Figure 73]
[Figure 74]
[Figure 75]
[Figure 76]
[Figure 77]
[Figure 78]
[Figure 79]
[Figure 80]
< >
page |< < of 213 > >|
194FED. COMMANDINI tionem cadet: Itaque cum à portione conoidis, cuius gra-
uitatis centrum e auferatur inſcripta figura, centrum ha-
bens p:
& ſit l e ad e p, ut figura inſcripta ad portiones reli
quas:
erit magnitudinis, quæ ex reliquis portionibus con
ſtat, centrum grauitatis punctum l, extra portionem ca-
dens.
quod fieri nequit. ergo linea p e minor eſt ip ſa g li-
nea propoſita.
Ex quibus perſpicuum eſt centrum grauitatis
figuræ inſcriptæ, &
circumſcriptæ eo magis acce
dere ad portionis centrum, quo pluribus cylin-
dris, uel cylindri portionibus conſtet:
fiatq́ figu
ra inſcripta maior, &
circumſcripta minor. &
quanquam continenter ad portionis centrū pro-
pius admoueatur nunquam tamen ad ipſum per
ueniet.
ſequeretur enim figuram inſcriptam, nó
ſolum portioni, ſed etiam circumſcriptæ figuræ
æqualem eſſe.
quod eſt abſurdum.
THE OREMA XXIII. PROPOSITIO XXIX.
Cvivslibet portionis conoidis rectangu-
li axis à cẽtro grauitatis ita diuiditur, ut pars quæ
terminatur ad uerticem, reliquæ partis, quæ ad ba
ſim ſit dupla.
SIT portio conoidis rectanguli uel abſciſſa plano ad
axem recto, uel non recto:
& ſecta ipſa altero plano per axé
ſit ſuperſiciei ſe ctio a b c r ectanguli coni ſectio, uel parabo
le;
plani abſcindentis portionem ſectio ſit recta linea a c:
axis portionis, & ſectionis diameter b d. Sumatur autem
in linea b d punctum e, ita ut b e ſit ipſius e d dupla.

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index