Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of figures

< >
[Figure 51]
[Figure 52]
[Figure 53]
[Figure 54]
[Figure 55]
[Figure 56]
[Figure 57]
[Figure 58]
[Figure 59]
[Figure 60]
[Figure 61]
[Figure 62]
[Figure 63]
[Figure 64]
[Figure 65]
[Figure 66]
[Figure 67]
[Figure 68]
[Figure 69]
[Figure 70]
[Figure 71]
[Figure 72]
[Figure 73]
[Figure 74]
[Figure 75]
[Figure 76]
[Figure 77]
[Figure 78]
[Figure 79]
[Figure 80]
< >
page |< < (46) of 213 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div284" type="section" level="1" n="95">
          <p>
            <s xml:id="echoid-s5082" xml:space="preserve">
              <pb o="46" file="0203" n="203" rhead="DE CENTRO GRAVIT. SOLID."/>
            ro ita demonſtrabitur. </s>
            <s xml:id="echoid-s5083" xml:space="preserve">Ducatur à puncto b ad planum ba-
              <lb/>
            ſis a c perpendicularis linea b h, quæ ipſam e fin K ſecet.
              <lb/>
            </s>
            <s xml:id="echoid-s5084" xml:space="preserve">erit b h altitudo coni, uel coni portionis a b c: </s>
            <s xml:id="echoid-s5085" xml:space="preserve">& </s>
            <s xml:id="echoid-s5086" xml:space="preserve">b K altitu
              <lb/>
              <note position="right" xlink:label="note-0203-01" xlink:href="note-0203-01a" xml:space="preserve">16. unde-
                <lb/>
              cimi.</note>
            do e f g. </s>
            <s xml:id="echoid-s5087" xml:space="preserve">Quod cum lineæ a c, e f inter ſe æ quidiſtent, ſunt
              <lb/>
            enim planorum æ quidiſtantium ſectiones: </s>
            <s xml:id="echoid-s5088" xml:space="preserve">habebit d b ad
              <lb/>
              <note position="right" xlink:label="note-0203-02" xlink:href="note-0203-02a" xml:space="preserve">4 ſexti.</note>
            b g proportionem ean dem, quam h b ad b k. </s>
            <s xml:id="echoid-s5089" xml:space="preserve">quare por-
              <lb/>
            tio conoidis a b c ad portionem e f g proportionem habet
              <lb/>
            compoſitam ex proportione baſis a c ad baſim e f; </s>
            <s xml:id="echoid-s5090" xml:space="preserve">& </s>
            <s xml:id="echoid-s5091" xml:space="preserve">ex
              <lb/>
            proportione d b axis ad axem b g. </s>
            <s xml:id="echoid-s5092" xml:space="preserve">Sed circulus, uel
              <lb/>
              <note position="right" xlink:label="note-0203-03" xlink:href="note-0203-03a" xml:space="preserve">2. duode
                <lb/>
              cimi</note>
            ellipſis circa diametrum a c ad circulum, uel ellipſim
              <lb/>
              <note position="right" xlink:label="note-0203-04" xlink:href="note-0203-04a" xml:space="preserve">7. de co-
                <lb/>
              noidibus
                <lb/>
              & ſphæ-
                <lb/>
              roidibus</note>
            circa e f, eſt ut quadratum a c ad quadratum e f; </s>
            <s xml:id="echoid-s5093" xml:space="preserve">hoc eſt ut
              <lb/>
            quadratũ a d ad quadratũ e g. </s>
            <s xml:id="echoid-s5094" xml:space="preserve">& </s>
            <s xml:id="echoid-s5095" xml:space="preserve">quadratum a d ad quadra
              <lb/>
            tum e g eſt, ut linea d b ad lineam b g. </s>
            <s xml:id="echoid-s5096" xml:space="preserve">circulus igitur, uel el
              <lb/>
            lipſis circa diametrum a c ad circulũ, uel ellipſim circa e f,
              <lb/>
              <note position="right" xlink:label="note-0203-05" xlink:href="note-0203-05a" xml:space="preserve">15. quinti</note>
            hoc eſt baſis ad baſim eandem proportionem habet, quã
              <lb/>
              <note position="right" xlink:label="note-0203-06" xlink:href="note-0203-06a" xml:space="preserve">20. primi
                <lb/>
              conicorũ</note>
            d b axis ad axem b g. </s>
            <s xml:id="echoid-s5097" xml:space="preserve">ex quibus ſequitur portionem a b c
              <lb/>
            ad portionem e b f habere proportionem duplam eius,
              <lb/>
            quæ eſt baſis a c ad bafim e f: </s>
            <s xml:id="echoid-s5098" xml:space="preserve">uel axis d b ad b g axem. </s>
            <s xml:id="echoid-s5099" xml:space="preserve">quod
              <lb/>
            demonſtrandum proponebatur.</s>
            <s xml:id="echoid-s5100" xml:space="preserve"/>
          </p>
        </div>
        <div xml:id="echoid-div286" type="section" level="1" n="96">
          <head xml:id="echoid-head103" xml:space="preserve">THEOREMA XXV. PROPOSITIO XXXI.</head>
          <p>
            <s xml:id="echoid-s5101" xml:space="preserve">Cuiuslibet fruſti à portione rectanguli conoi
              <lb/>
            dis abſcisſi, centrum grauitatis eſt in axe, ita ut
              <lb/>
            demptis primum à quadrato, quod fit ex diame-
              <lb/>
            tro maioris baſis, tertia ipſius parte, & </s>
            <s xml:id="echoid-s5102" xml:space="preserve">duabus
              <lb/>
            tertiis quadrati, quod fit ex diametro baſis mino-
              <lb/>
            ris: </s>
            <s xml:id="echoid-s5103" xml:space="preserve">deinde à tertia parte quadrati maioris baſis
              <lb/>
            rurſus dempta portione, ad quam reliquum qua
              <lb/>
            drati baſis maioris unà cum dicta portione duplã
              <lb/>
            proportionem habeat eius, quæ eſt quadrati </s>
          </p>
        </div>
      </text>
    </echo>