Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of figures

< >
[Figure 61]
[Figure 62]
[Figure 63]
[Figure 64]
[Figure 65]
[Figure 66]
[Figure 67]
[Figure 68]
[Figure 69]
[Figure 70]
[Figure 71]
[Figure 72]
[Figure 73]
[Figure 74]
[Figure 75]
[Figure 76]
[Figure 77]
[Figure 78]
[Figure 79]
[Figure 80]
[Figure 81]
[Figure 82]
[Figure 83]
[Figure 84]
[Figure 85]
[Figure 86]
[Figure 87]
[Figure 88]
[Figure 89]
[Figure 90]
< >
page |< < of 213 > >|
174FED. COMMANDINI per f planum baſibus æquidiſtans ducatur, ut ſit ſectio cir
culus, uel ellipſis circa diametrum f g.
Dico ſectionem a b
ad ſectionem f g eandem proportionem habere, quam f g
ad ipſam c d.
Simili enim ratione, qua ſupra, demonſtrabi-
tur quadratum a b ad quadratum f g ita eſſe, ut quadratũ
f g ad c d quadratum.
Sed circuli inter ſe eandem propor-
112. duode
cimi
tionem habent, quam diametrorum quadrata.
ellipſes au-
tem circa a b, f g, c d, quæ ſimiles ſunt, ut oſten dimus in cõ-
mentariis in principium libri Archimedis de conoidibus,
&
ſphæroidibus, eam habẽt proportionem, quam quadrar
ta diametrorum, quæ eiuſdem rationis ſunt, ex corollaio-
ſeptimæ propoſitionis eiuſdem li-
128[Figure 128] bri.
ellipſes enim nunc appello ip-
ſa ſpacia ellipſibus contenta.
ergo
circulus, uel ellipſis a b ad circulũ,
uel ellipſim f g eam proportionem
habet, quam circulus, uel ellipſis
f g ad circulum uel ellipſim c d.
quod quidem facienduni propo-
ſuimus.
THEOREMA XX. PROPOSITIO XXV.
Qvodlibet fruſtum pyramidis, uel coni,
uel coni portionis ad pyramidem, uel conum, uel
coni portionem, cuius baſis eadem eſt, &
æqualis
altitudo, eandem proportionẽ habet, quam utræ
que baſes, maior, &
minor ſimul ſumptæ vnà cũ
ea, quæ inter ipſas ſit proportionalis, ad baſim ma
iorem.

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index