Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of figures

< >
[Figure 71]
[Figure 72]
[Figure 73]
[Figure 74]
[Figure 75]
[Figure 76]
[Figure 77]
[Figure 78]
[Figure 79]
[Figure 80]
[Figure 81]
[Figure 82]
[Figure 83]
[Figure 84]
[Figure 85]
[Figure 86]
[Figure 87]
[Figure 88]
[Figure 89]
[Figure 90]
[Figure 91]
[Figure 92]
[Figure 93]
[Figure 94]
[Figure 95]
[Figure 96]
[Figure 97]
[Figure 98]
[Figure 99]
[Figure 100]
< >
page |< < of 213 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div216" type="section" level="1" n="73">
          <p>
            <s xml:id="echoid-s3402" xml:space="preserve">
              <pb file="0134" n="134" rhead="FED. COMMANDINI"/>
            t u, x y ipſi g h æquidiſtare. </s>
            <s xml:id="echoid-s3403" xml:space="preserve">Et quoniam triangula, quæ
              <lb/>
            fiunt à lineis K y, y u, u s, s h æqualia ſuntinter ſe, & </s>
            <s xml:id="echoid-s3404" xml:space="preserve">ſimilia
              <lb/>
            triangulo K m h: </s>
            <s xml:id="echoid-s3405" xml:space="preserve">habebit triangulum K m h ad triangulũ
              <lb/>
              <note position="left" xlink:label="note-0134-01" xlink:href="note-0134-01a" xml:space="preserve">19. ſexti</note>
            K δ y duplam proportionem eius, quæ eſt lineæ k h ad K y.
              <lb/>
            </s>
            <s xml:id="echoid-s3406" xml:space="preserve">ſed _K_ h poſita eſt quadrupla ipſius k y. </s>
            <s xml:id="echoid-s3407" xml:space="preserve">ergo triangulum
              <lb/>
            κ m h ad triangulum _K_ δ y eãdem proportionem habebit,
              <lb/>
            quam ſexdecim ad unũ & </s>
            <s xml:id="echoid-s3408" xml:space="preserve">ad quatuor triangula k δ y, y u,
              <lb/>
            u s, s α h habebit eandem, quam fexdecim ad quatuor, hoc
              <lb/>
            eſt quam h K ad κ y: </s>
            <s xml:id="echoid-s3409" xml:space="preserve">& </s>
            <s xml:id="echoid-s3410" xml:space="preserve">ſimiliter eandem habere demonſtra
              <lb/>
            bitur trian-
              <lb/>
              <figure xlink:label="fig-0134-01" xlink:href="fig-0134-01a" number="90">
                <image file="0134-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0134-01"/>
              </figure>
            gulum κ m g
              <lb/>
            ad quatuor
              <lb/>
            triãgula K δ
              <lb/>
            x, x γ t, t β r,
              <lb/>
            r z g. </s>
            <s xml:id="echoid-s3411" xml:space="preserve">quare
              <lb/>
              <note position="left" xlink:label="note-0134-02" xlink:href="note-0134-02a" xml:space="preserve">2. uel 121
                <lb/>
              quinti.</note>
            totum trian
              <lb/>
            gulum K g h
              <lb/>
            ad omnia tri
              <lb/>
            angula g z r,
              <lb/>
            r β t, t γ x, x δ
              <lb/>
            _K_, K δ y, y u,
              <lb/>
            u s, s α h ita
              <lb/>
            erit, ut h κ a d
              <lb/>
            k y, hoc eſt
              <lb/>
            ut h m ad m
              <lb/>
            q. </s>
            <s xml:id="echoid-s3412" xml:space="preserve">Si igitur in
              <lb/>
            triangulis a b c, d e f deſcribantur figuræ ſimiles ei, quæ de-
              <lb/>
            ſcripta eſt in g h K triangulo: </s>
            <s xml:id="echoid-s3413" xml:space="preserve">& </s>
            <s xml:id="echoid-s3414" xml:space="preserve">per lineas ſibi reſp onden-
              <lb/>
            tes plana ducantur: </s>
            <s xml:id="echoid-s3415" xml:space="preserve">totum priſma a f diuiſum eritin tria
              <lb/>
            ſolida parallelepipeda y γ, u β, s z, quorum baſes ſunt æ qua
              <lb/>
            les & </s>
            <s xml:id="echoid-s3416" xml:space="preserve">ſimiles ipſis parallelogrammis y γ, u β, s z: </s>
            <s xml:id="echoid-s3417" xml:space="preserve">& </s>
            <s xml:id="echoid-s3418" xml:space="preserve">in octo
              <lb/>
            priſmata g z r, r β t, t γ x, x δ K, κ δ y, y u, u s, s α h: </s>
            <s xml:id="echoid-s3419" xml:space="preserve">quorum
              <lb/>
            item baſes æquales, & </s>
            <s xml:id="echoid-s3420" xml:space="preserve">ſimiles ſunt dictis triangulis; </s>
            <s xml:id="echoid-s3421" xml:space="preserve">altitu-
              <lb/>
            do autem in omnibus, totius priſmatis altitudini æ qualis.</s>
            <s xml:id="echoid-s3422" xml:space="preserve"/>
          </p>
        </div>
      </text>
    </echo>