Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

#### Table of figures

< >
[Figure 81]
[Figure 82]
[Figure 83]
[Figure 84]
[Figure 85]
[Figure 86]
[Figure 87]
[Figure 88]
[Figure 89]
[Figure 90]
[Figure 91]
[Figure 92]
[Figure 93]
[Figure 94]
[Figure 95]
[Figure 96]
[Figure 97]
[Figure 98]
[Figure 99]
[Figure 100]
[Figure 101]
[Figure 102]
[Figure 103]
[Figure 104]
[Figure 105]
[Figure 106]
[Figure 107]
[Figure 108]
[Figure 109]
[Figure 110]
< >
page |< < (15) of 213 > >|
14115DE CENTRO GRAVIT. SOLID. bere proportionem, quam ſpacium g h ad dictã
figuram
, hoc modo demonſtrabimus.
& ab x conſtituatur conus, uel
coni portio, altitudinẽ habens eandẽ, quã cylindrus uel cy
lindri
portio c e.
Sit deinde rectilinea figura, in quay eade,
quæ
in ſpacio g h deſcripta eſt:
& ab hac pyramis æquealta
conſtituatur
.
Dico conũ uel coni portionẽ x pyramidiy æ-
qualẽ
eſſe.
Itaque in circu
lo
, uel ellipſi x deſcribatur figura rectilinea;
& & quoniam piramides æque altæ inter ſe ſunt, ſicuti ba
116. duode-
cimi
.
ſes;
Sed ſigura