Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of figures

< >
[Figure 81]
[Figure 82]
[Figure 83]
[Figure 84]
[Figure 85]
[Figure 86]
[Figure 87]
[Figure 88]
[Figure 89]
[Figure 90]
[Figure 91]
[Figure 92]
[Figure 93]
[Figure 94]
[Figure 95]
[Figure 96]
[Figure 97]
[Figure 98]
[Figure 99]
[Figure 100]
[Figure 101]
[Figure 102]
[Figure 103]
[Figure 104]
[Figure 105]
[Figure 106]
[Figure 107]
[Figure 108]
[Figure 109]
[Figure 110]
< >
page |< < of 213 > >|
THEOREMA XIIII. PROPOSITIO XVIII.
Sit ſolidum parallelepipe
110[Figure 110] dum a b c d e f g h, cuius axis
k
1:
ſeceturq; plano baſibus
æquidiſtante
, quod faciat
fectionem
m n o p;
& axi in
puncto
q occurrat.
Dico
ſolidum
g m ad ſolidum m c
eam
proportionem habere,
quam
altitudo ſolidi g m ha-
betad
ſolidi m c altitudi-
nem
;
uel quam axis k q ad
axem
q l.
Sienim axis K l ad
baſis
planum ſit perpendicu
laris
, &
linea g c, quæ ex quin
ta
huius ipſi k l æquidiſtat,
perpendicularis
erit ad idẽ
planum
, &
ſolidi altitudi-
nem
dimetietur.
Itaqueſo-
112. undeci
mi
.
lidum g m ad ſolidum m c
eam
proportionem habet,
quam
parallelogrammũ g n
ad
parallelogrammum n c,
hoc
eſt quam linea g o, quæ
22i. ſexti.

Text layer

  • Dictionary

Text normalization

  • Original
  • Regularized
  • Normalized

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index