Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

#### Table of figures

< >
[Figure 81]
[Figure 82]
[Figure 83]
[Figure 84]
[Figure 85]
[Figure 86]
[Figure 87]
[Figure 88]
[Figure 89]
[Figure 90]
[Figure 91]
[Figure 92]
[Figure 93]
[Figure 94]
[Figure 95]
[Figure 96]
[Figure 97]
[Figure 98]
[Figure 99]
[Figure 100]
[Figure 101]
[Figure 102]
[Figure 103]
[Figure 104]
[Figure 105]
[Figure 106]
[Figure 107]
[Figure 108]
[Figure 109]
[Figure 110]
< >
page |< < of 213 > >|
138FED. COMMANDINI ad priſma a b c e f g. quare linea s y ad y t eandem propor-
tionem habet, quam priſma a d c e h g ad priſma a b c e f g.
Sed priſmatis a b c e f g centrum grauitatis eſts: & priſma-
tis a d c e h g centrum t.
magnitudinis igitur ex his compo
ſitæ, hoc eſt totius priſmatis a g centrum grauitatis eſt pun
ctum y;
medium ſcilicet axis u x, qui oppoſitorum plano-
rum centra coniungit.
Rurſus ſit priſma baſim habens pentagonum a b c d e:
& quod ei opponitur ſit f g h _K_ l: ſec enturq; a f, b g, c h,
d _k_, el bifariam:
& per diuiſiones ducto plano, ſectio ſit pẽ
tagonũ m n o p q.
deinde iuncta e b per lineas le, e b aliud
planum ducatur, diuidẽs priſ
ma a k in duo priſmata, in priſ
ma ſcilicet al, cuius plana op-
poſita ſint triangula a b e f g l:
& in prima b _k_ cuius plana op
poſita ſint quadrilatera b c d e
g h _k_ l.
Sint autem triangulo-
rum a b e, f g l centra grauita
tis puncta r ſ:
& b c d e, g h _k_ l

iunganturq;
r s, t u o ccurren-
tes plano m n o p q in punctis
x y.
& itidem iungãtur r t, ſu,
x y.
erit in linea r t cẽtrum gra
uitatis pentagoni a b c d e;

quod ſit z:
& in linea ſu cen-
trum pentagoni f g h k l:
ſit au
tem χ:
& ducatur z χ, quæ di-
cto plano in χ occurrat.
Itaq;
punctum x eſt centrum graui
tatis trianguli m n q, ac priſ-
matis al:
& y grauitatis centrum quadrilateri n o p q, ac
priſmatis b k.
quare y centrum erit pentagoni m n o p q. &