Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of figures

< >
[Figure 81]
[Figure 82]
[Figure 83]
[Figure 84]
[Figure 85]
[Figure 86]
[Figure 87]
[Figure 88]
[Figure 89]
[Figure 90]
[Figure 91]
[Figure 92]
[Figure 93]
[Figure 94]
[Figure 95]
[Figure 96]
[Figure 97]
[Figure 98]
[Figure 99]
[Figure 100]
[Figure 101]
[Figure 102]
[Figure 103]
[Figure 104]
[Figure 105]
[Figure 106]
[Figure 107]
[Figure 108]
[Figure 109]
[Figure 110]
< >
page |< < of 213 > >|
130FED. COMMANDINI
SIT cylindrus, uel cylindri po rtio a c: & plano per a-
xem ducto ſecetur;
cuius ſectio ſit parallelogrammum a b
c d:
& bifariam diuiſis a d, b c parallelogrammi lateribus,
per diuiſionum puncta e f planum baſi æquidiſtans duca-
tur;
quod faciet ſectionem, in cy lindro quidem circulum
æqualem iis, qui ſunt in baſibus, ut demonſtrauit Serenus
in libro cylindricorum, propoſitione quinta:
in cylindri
uero portione ellipſim æqualem, &
ſimilem eis, quæ ſunt
in oppoſitis planis, quod nos
86[Figure 86] demonſtrauimus in commen
tariis in librum Archimedis
de conoidibus, &
ſphæroidi-
bus.
Dico centrum grauita-
tis cylindri, uel cylindri por-
tionis eſſe in plano e f.
Si enĩ
fieri poteſt, fit centrum g:
&
ducatur g h ipſi a d æquidi-
ſtans, uſque ad e f planum.
Itaque linea a e continenter
diuiſa bifariam, erit tandem
pars aliqua ipſius k e, minor
g h.
Diuidantur ergo lineæ
a e, e d in partes æquales ipſi
k e:
& per diuiſiones plana ba
ſibus æquidiſtantia ducãtur.

erunt iam ſectiones, figuræ æ-
quales, &
ſimiles eis, quæ ſunt
in baſibus:
atque erit cylindrus in cylindros diuiſus: & cy
lindri portio in portiones æquales, &
ſimiles ipſi k f. reli-
qua ſimiliter, ut ſuperius in priſmate concludentur.

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index