Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of figures

< >
[Figure 81]
[Figure 82]
[Figure 83]
[Figure 84]
[Figure 85]
[Figure 86]
[Figure 87]
[Figure 88]
[Figure 89]
[Figure 90]
[Figure 91]
[Figure 92]
[Figure 93]
[Figure 94]
[Figure 95]
[Figure 96]
[Figure 97]
[Figure 98]
[Figure 99]
[Figure 100]
[Figure 101]
[Figure 102]
[Figure 103]
[Figure 104]
[Figure 105]
[Figure 106]
[Figure 107]
[Figure 108]
[Figure 109]
[Figure 110]
< >
page |< < (22) of 213 > >|
15522DE CENTRO GRAVIT. SOLID.
Ex demonſtratis perſpicue apparet, portioni
ſphæræ uel ſphæroidis, quæ dimidia maior eſt, cẽ
trum grauitatis in axe conſiſtere.
Data enim
108[Figure 108] qualibet maio
ri portiõe, quo
niã totius ſphæ
ræ, uel ſphæroi
dis grauitatis
centrum eſt in
axe;
eſt autem
&
in axe cen-
trum portio-
nis minoris:
reliquæ portionis uidelicet maioris centrum in axe neceſ-
ſario conſiſtet.
THE OREMA XIII. PROPOSITIO XVII.
Cuiuslibet pyramidis triã
109[Figure 109] gularem baſim habẽtis gra
uitatis centrum eſt in pun-
cto, in quo ipſius axes con-
ueniunt.
Sit pyramis, cuius baſis trian
gulum a b c, axis d e:
ſitq; trian
guli b d c grauitatis centrum f:
& iungatur a f. erit & a faxis eiuſ
dem pyramidis ex tertia diffini-
tione huius.
Itaque quoniam centrum grauitatis eſt in
axe d e;
eſt autem & in axe a f; quod proxime

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index