Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of figures

< >
[Figure 81]
[Figure 82]
[Figure 83]
[Figure 84]
[Figure 85]
[Figure 86]
[Figure 87]
[Figure 88]
[Figure 89]
[Figure 90]
[Figure 91]
[Figure 92]
[Figure 93]
[Figure 94]
[Figure 95]
[Figure 96]
[Figure 97]
[Figure 98]
[Figure 99]
[Figure 100]
[Figure 101]
[Figure 102]
[Figure 103]
[Figure 104]
[Figure 105]
[Figure 106]
[Figure 107]
[Figure 108]
[Figure 109]
[Figure 110]
< >
page |< < of 213 > >|
204FED. COMMANDINI ioris baſis ad quadratum minoris: centrum ſit in
eo axis puncto, quo ita diuiditur ut pars, quæ mi
norem baſim attingit ad alteram partem eandem
proportionem habeat, quam dempto quadrato
minoris baſis à duabus tertiis quadrati maioris,
habet id, quod reliquum eſt unà cum portione à
tertia quadrati maioris parte dempta, ad reliquà
eiuſdem tertiæ portionem.
SIT fruſtum à portione rectanguli conoidis abſciſſum
a b c d, cuius maior baſis circulus, uel ellipſis circa diame-
trum b c, minor circa diametrum a d;
& axis e f. deſcriba-
tur autem portio conoidis, à quo illud abſciſſum eſt, &
pla-
150[Figure 150] no per axem ducto ſecetur;
ut ſuperficiei ſectio ſit parabo-
le b g c, cuius diameter, &
axis portionis g f: deinde g f diui
datur in puncto h, ita ut g h ſit dupla h f:
& rurſus g e in ean
dem proportionem diuidatur:
ſitq; g _k_ ipſius k e dupla.
ex iis, quæ proxime demonſtrauimus, conſtat centrum gra
uitatis portionis b g c eſſe h punctum:
& portionis a g c
punctum k.
ſumpto igitur infra h punctol, ita ut k h ad h

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index