Cardano, Geronimo, Offenbarung der Natur und natürlicher dingen auch mancherley subtiler würckungen

Table of figures

< >
[81. Figure (Variables: p q r d t ſ e)]
[82. Figure (Variables: a c d @)]
[83. Figure (Variables: H B D L M K G F C E N A)]
[84. Figure: Pr@ma. (Variables: C A B D)]
[85. Figure: Secun da. (Variables: E)]
[86. Figure: Tertia (Variables: F)]
[87. Figure: Tertia. (Variables: G)]
[88. Figure: MERIDIES. Aequinoctij circulus. Orizon ſeu Fin@tor uiſus, ſeu Limen uiſus. Orizon ORIENS. OCCIDENS circulus Poſitionis. circulus Poſitionis. SEPTEN TRIO. (Variables: 3 6 9 12 15 18 21 24 27 30 33 36 39 42 43 48 51 54 57 60 63 66 69 72 75 78 81 84 87 90 93 96 99 102 105 108 111 114 117 120 123 126 129 132 135 138 141 144 147 150 153 156 159 162 165 168 171 174 177 180 183 186 189 192 195 198 201 204 207 210 213 216 219 222 300 303 306 309 312 315 318 321 324 327 330 333 336 339 342 345 348 351 354 357 360)]
[89. Figure (Variables: A B 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1)]
[90. Figure (Variables: 10 20 30 40 50 60 65)]
[91. Figure]
[92. Figure: Frigula. Habitabilis Borea@is. Ecliptica Tor ri da Habitabilis Auſhalis. Frigida. (Variables: 23{1/2} c 23{1/2} g 43 m 23{1/2} b 23{1/2} n 43 f 23{1/2} d 23{1/2} h 43 l 23{1/2} a 23{1/2} k 43 47 47)]
[93. Figure (Variables: a d e f g c b)]
[94. Figure (Variables: c a b e f d)]
[95. Figure (Variables: A E C D G H M N L B F)]
[96. Figure (Variables: A B C V E D)]
[97. Figure]
[98. Figure (Variables: a d c b e)]
[99. Figure: Arcticus Orient. Occides. Antarcti. (Variables: c a b d)]
[100. Figure (Variables: @ e f d g c a)]
[101. Figure]
[102. Figure]
[103. Figure (Variables: c d b a)]
[104. Figure (Variables: a c b d g l e l f)]
[105. Figure (Variables: a b c d e f k g h o)]
[106. Figure (Variables: d e a b c)]
[107. Figure (Variables: b a e d c)]
[108. Figure: Tetra cedron.]
[109. Figure: Exace dron.]
[110. Figure: Octo cedron]
< >
page |< < (dxij) of 997 > >|
Von mancherlei wunderbaren
    <echo version="1.0RC">
      <text xml:lang="de" type="free">
        <div type="section" level="1" n="68">
          <p>
            <s xml:space="preserve">
              <pb o="dxij" file="0568" n="568" rhead="Von mancherlei wunderbaren"/>
            der viereckechten geraden gantzen ſchooß gegẽ dem außgefürtẽ der ſchooſ-
              <lb/>
            ſen ſeiten am triangel vndereinãder/ iſt wie die ſchooß am vmbkerten eck/
              <lb/>
            ſo von beiden ſeitten begriffenn/ gegen der vmbkerten ſchooß der dritten
              <lb/>
            ſeitten/ vnnd der vmbkerten ſchoß vnderſcheid an den zwo erſten ſeittenn.
              <lb/>
            </s>
            <s xml:space="preserve">Zů einem exempel. </s>
            <s xml:space="preserve">Ich nimb den triangel G F B/ von welchem (als ich ge
              <lb/>
            ſagt hab) ich nit beſchleüß daß er ein Orthogonus oder gleiche eck habe/ ſon
              <lb/>
            der er ſeye wie er wölle/ ſo verr er auß der größeren circkel theil ſeye/ ſo ſag
              <lb/>
            ich daß die proportz der gantzen geraden viereckechten ſchooß/ gegenn dem
              <lb/>
            das auß der geraden ſchooß (damit ich ein exempel gebe) kommen B G in
              <lb/>
            die geſtrackte ſchooß G F/ iſt der ſchooß geleich des vmbkertẽ eck G/ ſo von
              <lb/>
            dem B G vnd G F begriffen/ gegen der vmbkerten ſchooßen vnderſcheid/
              <lb/>
            vnder wölchen vmbkerten ſchößen/ die ein des bogen F B ſchooß iſt der drit
              <lb/>
            ten ſeiten/ der ander aber ein bogen des vnderſcheid G B vnd G F der vor-
              <lb/>
            genden bogen.</s>
            <s xml:space="preserve"/>
          </p>
          <figure>
            <variables xml:space="preserve">c a b e f d</variables>
          </figure>
          <p>
            <s xml:space="preserve">Damit du aber verſtãdeſt was ein rechter vnd
              <lb/>
            vmbkerter Sinus oder ſchooß ſeye/ ſolt du wüſ-
              <lb/>
            ſen daß die geſtrackte linien ſo vnder dem bogenn
              <lb/>
            gezogen/ ein chorda oder ſeytten genennet wirt.
              <lb/>
            </s>
            <s xml:space="preserve">Dieweil aber diſe zůgleich von des circkels diame
              <lb/>
            ter abgetheylet wirt/ neñet man den halbẽ theil/
              <lb/>
            die geſtrackte ſchooß an dem ſelbigen halbenn bo-
              <lb/>
            gen. </s>
            <s xml:space="preserve">Geſtrackt aber/ welches ein theil des Diame
              <lb/>
            ter iſt/ ſo ſich von der rechtẽ ſchooß gegen dem bo-
              <lb/>
            gen ſtrecket/ vnd wirt ein ſchooß genẽnet/ gegen
              <lb/>
            des ſelbigen bogen halben theil. </s>
            <s xml:space="preserve">Nimb ein exem-
              <lb/>
            pel. </s>
            <s xml:space="preserve">in dem circkel A B C D/ heißet A E B ein ſeytten oder ſchnůr an dem
              <lb/>
            bogen A C B. </s>
            <s xml:space="preserve">deßhalben theile ſie D E C durch das kommend Centrum A
              <lb/>
            B durch geleiche theil in E/ welche auch in geleiche geſtrackte theil zerſchnei
              <lb/>
            den/ als Euclides anzeigt/ vnnd den bogen A B gleicher geſtalt durch ge-
              <lb/>
            leiche theil inn C. </s>
            <s xml:space="preserve">deßhalben wirt E B ein rechte ſchooß ſein B C/ vnnd E
              <lb/>
            C ein vmbkerte ſchooß des A C. </s>
            <s xml:space="preserve">Wann man nun den bogen A C B erken-
              <lb/>
            net/ haben wir auß dem Ptolemeo die ſchnůr A B. </s>
            <s xml:space="preserve">deßhalben auch E B/
              <lb/>
            dann es iſt das halb an A B.</s>
            <s xml:space="preserve"/>
          </p>
          <p>
            <s xml:space="preserve">Alſo wann man einen bogenn für ſtellet/ ſo iſt die rechte ſchooß der halb
              <lb/>
            theil an der ſchnůr oder ſeytten des zwifachen bogen. </s>
            <s xml:space="preserve">wann wir den ſelbigẽ
              <lb/>
            hand/ haben wir auch den vmbkerten bogen/ auß des Euclidis demonſtra
              <lb/>
            tionen vnd beweiſungen/ wañ man E B in ſich ſelbs zeücht/ vñ diſen qua-
              <lb/>
            draten vnd viereckechten theil auß dem quadraten F C zeücht/ vnnd des ü-
              <lb/>
            berblibenen/ wann man die ſeyten oder wurtzel nimmet/ welches die größe
              <lb/>
            F E iſt. </s>
            <s xml:space="preserve">wann man die ſelbigen abzeücht vonn F C/ ſo bleibt E C die vmb-
              <lb/>
            kerte ſchooß. </s>
            <s xml:space="preserve">wir haben auch von deßwegen/ vnnd weil es treffenlich nutz-
              <lb/>
            lich/ die tafel verordnet. </s>
            <s xml:space="preserve">Ich hab aber auß Ptolemei taflen die gerechten
              <lb/>
            ſchooß außgezogen/ vnnd die vmbkerten auß der gerechten oder geſtrack-
              <lb/>
            ten gemachet. </s>
            <s xml:space="preserve">Wann aber auch etliche minutien vnnd brüchzaal im bogen
              <lb/>
            an den tbeilen hangend/ ſo zeüch ihr zaal in der brüchzaal vnderſcheid/ ſo
              <lb/>
            wirt daß außgebracht der ſecunden zaal ſein/ welche man zů den ſchoßen
              <lb/>
            thůn ſoll.</s>
            <s xml:space="preserve"/>
          </p>
        </div>
      </text>
    </echo>