Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of figures

< >
[81. Figure]
[82. Figure]
[83. Figure]
[84. Figure]
[85. Figure]
[86. Figure]
[87. Figure]
[88. Figure]
[89. Figure]
[90. Figure]
[91. Figure]
[92. Figure]
[93. Figure]
[94. Figure]
[95. Figure]
[96. Figure]
[97. Figure]
[98. Figure]
[99. Figure]
[100. Figure]
[101. Figure]
[102. Figure]
[103. Figure]
[104. Figure]
[105. Figure]
[106. Figure]
[107. Figure]
[108. Figure]
[109. Figure]
[110. Figure]
< >
page |< < (21) of 213 > >|
DE CENTRO GRAVIT. SOLID.
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="79">
          <p>
            <s xml:space="preserve">
              <pb o="21" file="0153" n="153" rhead="DE CENTRO GRAVIT. SOLID."/>
            diuidendo figura ſolida inſcripta ad dictam exceſſus par-
              <lb/>
            tem, ut τ e ad e ρ. </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">quoniam à cono, ſeu coni portione,
              <lb/>
            cuius grauitatis centrum eſt e, aufertur figura inſcripta,
              <lb/>
            cuius centrum ρ: </s>
            <s xml:space="preserve">reſiduæ magnitudinis compoſitæ ex par
              <lb/>
            te exceſſus, quæ intra coni, uel coni portionis ſuperficiem
              <lb/>
            continetur, centrum grauitatis erit in linea ζ e protracta,
              <lb/>
            atque in puncto τ. </s>
            <s xml:space="preserve">quod eſt abſurdum. </s>
            <s xml:space="preserve">cõſtat ergo centrũ
              <lb/>
            grauitatis coni, uel coni portionis, eſſe in axe b d: </s>
            <s xml:space="preserve">quod de
              <lb/>
            monſcrandum propoſuimus.</s>
            <s xml:space="preserve"/>
          </p>
          <div type="float" level="2" n="2">
            <figure xlink:label="fig-0151-01" xlink:href="fig-0151-01a">
              <image file="0151-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0151-01"/>
            </figure>
            <figure xlink:label="fig-0152-01" xlink:href="fig-0152-01a">
              <image file="0152-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0152-01"/>
            </figure>
          </div>
        </div>
        <div type="section" level="1" n="80">
          <head xml:space="preserve">THE OREMA XI. PROPOSITIO XV.</head>
          <p>
            <s xml:space="preserve">Cuiuslibet portionis ſphæræ uel ſphæroidis,
              <lb/>
            quæ dimidia maior non ſit: </s>
            <s xml:space="preserve">itemq́; </s>
            <s xml:space="preserve">cuiuslibet por
              <lb/>
            tionis conoidis, uel abſciſſæ plano ad axem recto,
              <lb/>
            uel non recto, centrum grauitatis in axe con-
              <lb/>
            ſiſtit.</s>
            <s xml:space="preserve"/>
          </p>
          <p>
            <s xml:space="preserve">Demonſtratio ſimilis erit ei, quam ſupra in cono, uel co
              <lb/>
            ni portione attulimus, ne toties eadem fruſtra iterentur.</s>
            <s xml:space="preserve"/>
          </p>
          <figure>
            <image file="0153-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0153-01"/>
          </figure>
        </div>
      </text>
    </echo>