Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of figures

< >
[Figure 81]
[Figure 82]
[Figure 83]
[Figure 84]
[Figure 85]
[Figure 86]
[Figure 87]
[Figure 88]
[Figure 89]
[Figure 90]
[Figure 91]
[Figure 92]
[Figure 93]
[Figure 94]
[Figure 95]
[Figure 96]
[Figure 97]
[Figure 98]
[Figure 99]
[Figure 100]
[Figure 101]
[Figure 102]
[Figure 103]
[Figure 104]
[Figure 105]
[Figure 106]
[Figure 107]
[Figure 108]
[Figure 109]
[Figure 110]
< >
page |< < (21) of 213 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div231" type="section" level="1" n="79">
          <p>
            <s xml:id="echoid-s3836" xml:space="preserve">
              <pb o="21" file="0153" n="153" rhead="DE CENTRO GRAVIT. SOLID."/>
            diuidendo figura ſolida inſcripta ad dictam exceſſus par-
              <lb/>
            tem, ut τ e ad e ρ. </s>
            <s xml:id="echoid-s3837" xml:space="preserve">& </s>
            <s xml:id="echoid-s3838" xml:space="preserve">quoniam à cono, ſeu coni portione,
              <lb/>
            cuius grauitatis centrum eſt e, aufertur figura inſcripta,
              <lb/>
            cuius centrum ρ: </s>
            <s xml:id="echoid-s3839" xml:space="preserve">reſiduæ magnitudinis compoſitæ ex par
              <lb/>
            te exceſſus, quæ intra coni, uel coni portionis ſuperficiem
              <lb/>
            continetur, centrum grauitatis erit in linea ζ e protracta,
              <lb/>
            atque in puncto τ. </s>
            <s xml:id="echoid-s3840" xml:space="preserve">quod eſt abſurdum. </s>
            <s xml:id="echoid-s3841" xml:space="preserve">cõſtat ergo centrũ
              <lb/>
            grauitatis coni, uel coni portionis, eſſe in axe b d: </s>
            <s xml:id="echoid-s3842" xml:space="preserve">quod de
              <lb/>
            monſcrandum propoſuimus.</s>
            <s xml:id="echoid-s3843" xml:space="preserve"/>
          </p>
        </div>
        <div xml:id="echoid-div234" type="section" level="1" n="80">
          <head xml:id="echoid-head87" xml:space="preserve">THE OREMA XI. PROPOSITIO XV.</head>
          <p>
            <s xml:id="echoid-s3844" xml:space="preserve">Cuiuslibet portionis ſphæræ uel ſphæroidis,
              <lb/>
            quæ dimidia maior non ſit: </s>
            <s xml:id="echoid-s3845" xml:space="preserve">itemq́; </s>
            <s xml:id="echoid-s3846" xml:space="preserve">cuiuslibet por
              <lb/>
            tionis conoidis, uel abſciſſæ plano ad axem recto,
              <lb/>
            uel non recto, centrum grauitatis in axe con-
              <lb/>
            ſiſtit.</s>
            <s xml:id="echoid-s3847" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s3848" xml:space="preserve">Demonſtratio ſimilis erit ei, quam ſupra in cono, uel co
              <lb/>
            ni portione attulimus, ne toties eadem fruſtra iterentur.</s>
            <s xml:id="echoid-s3849" xml:space="preserve"/>
          </p>
          <figure number="106">
            <image file="0153-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0153-01"/>
          </figure>
        </div>
      </text>
    </echo>