Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of figures

< >
[Figure 81]
[Figure 82]
[Figure 83]
[Figure 84]
[Figure 85]
[Figure 86]
[Figure 87]
[Figure 88]
[Figure 89]
[Figure 90]
[Figure 91]
[Figure 92]
[Figure 93]
[Figure 94]
[Figure 95]
[Figure 96]
[Figure 97]
[Figure 98]
[Figure 99]
[Figure 100]
[Figure 101]
[Figure 102]
[Figure 103]
[Figure 104]
[Figure 105]
[Figure 106]
[Figure 107]
[Figure 108]
[Figure 109]
[Figure 110]
< >
page |< < of 213 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div278" type="section" level="1" n="93">
          <p>
            <s xml:id="echoid-s4878" xml:space="preserve">
              <pb file="0194" n="194" rhead="FED. COMMANDINI"/>
            tionem cadet: </s>
            <s xml:id="echoid-s4879" xml:space="preserve">Itaque cum à portione conoidis, cuius gra-
              <lb/>
            uitatis centrum e auferatur inſcripta figura, centrum ha-
              <lb/>
            bens p: </s>
            <s xml:id="echoid-s4880" xml:space="preserve">& </s>
            <s xml:id="echoid-s4881" xml:space="preserve">ſit l e ad e p, ut figura inſcripta ad portiones reli
              <lb/>
            quas: </s>
            <s xml:id="echoid-s4882" xml:space="preserve">erit magnitudinis, quæ ex reliquis portionibus con
              <lb/>
            ſtat, centrum grauitatis punctum l, extra portionem ca-
              <lb/>
            dens. </s>
            <s xml:id="echoid-s4883" xml:space="preserve">quod fieri nequit. </s>
            <s xml:id="echoid-s4884" xml:space="preserve">ergo linea p e minor eſt ip ſa g li-
              <lb/>
            nea propoſita.</s>
            <s xml:id="echoid-s4885" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s4886" xml:space="preserve">Ex quibus perſpicuum eſt centrum grauitatis
              <lb/>
            figuræ inſcriptæ, & </s>
            <s xml:id="echoid-s4887" xml:space="preserve">circumſcriptæ eo magis acce
              <lb/>
            dere ad portionis centrum, quo pluribus cylin-
              <lb/>
            dris, uel cylindri portionibus conſtet: </s>
            <s xml:id="echoid-s4888" xml:space="preserve">fiatq́ figu
              <lb/>
            ra inſcripta maior, & </s>
            <s xml:id="echoid-s4889" xml:space="preserve">circumſcripta minor. </s>
            <s xml:id="echoid-s4890" xml:space="preserve">& </s>
            <s xml:id="echoid-s4891" xml:space="preserve">
              <lb/>
            quanquam continenter ad portionis centrū pro-
              <lb/>
            pius admoueatur nunquam tamen ad ipſum per
              <lb/>
            ueniet. </s>
            <s xml:id="echoid-s4892" xml:space="preserve">ſequeretur enim figuram inſcriptam, nó
              <lb/>
            ſolum portioni, ſed etiam circumſcriptæ figuræ
              <lb/>
            æqualem eſſe. </s>
            <s xml:id="echoid-s4893" xml:space="preserve">quod eſt abſurdum.</s>
            <s xml:id="echoid-s4894" xml:space="preserve"/>
          </p>
        </div>
        <div xml:id="echoid-div281" type="section" level="1" n="94">
          <head xml:id="echoid-head101" xml:space="preserve">THE OREMA XXIII. PROPOSITIO XXIX.</head>
          <p>
            <s xml:id="echoid-s4895" xml:space="preserve">
              <emph style="sc">Cvivslibet</emph>
            portionis conoidis rectangu-
              <lb/>
            li axis à cẽtro grauitatis ita diuiditur, ut pars quæ
              <lb/>
            terminatur ad uerticem, reliquæ partis, quæ ad ba
              <lb/>
            ſim ſit dupla.</s>
            <s xml:id="echoid-s4896" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s4897" xml:space="preserve">SIT portio conoidis rectanguli uel abſciſſa plano ad
              <lb/>
            axem recto, uel non recto: </s>
            <s xml:id="echoid-s4898" xml:space="preserve">& </s>
            <s xml:id="echoid-s4899" xml:space="preserve">ſecta ipſa altero plano per axé
              <lb/>
            ſit ſuperſiciei ſe ctio a b c r ectanguli coni ſectio, uel parabo
              <lb/>
            le; </s>
            <s xml:id="echoid-s4900" xml:space="preserve">plani abſcindentis portionem ſectio ſit recta linea a c:
              <lb/>
            </s>
            <s xml:id="echoid-s4901" xml:space="preserve">axis portionis, & </s>
            <s xml:id="echoid-s4902" xml:space="preserve">ſectionis diameter b d. </s>
            <s xml:id="echoid-s4903" xml:space="preserve">Sumatur autem
              <lb/>
            in linea b d punctum e, ita ut b e ſit ipſius e d dupla. </s>
            <s xml:id="echoid-s4904" xml:space="preserve"/>
          </p>
        </div>
      </text>
    </echo>