Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

#### Table of figures

< >
[Figure 91]
[Figure 92]
[Figure 93]
[Figure 94]
[Figure 95]
[Figure 96]
[Figure 97]
[Figure 98]
[Figure 99]
[Figure 100]
[Figure 101]
[Figure 102]
[Figure 103]
[Figure 104]
[Figure 105]
[Figure 106]
[Figure 107]
[Figure 108]
[Figure 109]
[Figure 110]
[Figure 111]
[Figure 112]
[Figure 113]
[Figure 114]
[Figure 115]
[Figure 116]
[Figure 117]
[Figure 118]
[Figure 119]
[Figure 120]
< >
page |< < of 213 > >|
142FED. COMMANDINI linea x cum ſit minor circulo, uel ellipſi, eſt etiam minor fi-
gura rectilinea y.
ergo pyramis x pyramide y minor erit.
Sed & maior; quod fieri nõ poteſt. At ſi conus, uel coni por
tio x ponatur minor pyramide y:
ſit alter conus æque al-
tus, uel altera coni portio χ ipſi pyramidi y æqualis.
erit
eius baſis circulus, uel ellipſis maior circulo, uel ellipſi x,
quorum exceſſus ſit ſpacium ω.
Siigitur in circulo, uel elli-
pſi χ figura rectilinea deſcribatur, ita ut portiones relictæ
ſint ω ſpacio minores, eiuſinodi figura adhuc maior erit cir
culo, uel ellipſi x, hoc eſt figura rectilinea _y_.
& p_y_ramis in
ea conſtituta minor cono, uel coni portione χ, hoc eſt mi-
nor p_y_ramide_y_.
eſt ergo ut χ figura rectilinea ad figuram
rectilineam _y_, ita pyramis χ ad pyramidem _y_.
quare cum
figura rectilinea χ ſit maior figura_y_:
erit & p_y_ramis χ p_y_-
ramide_y_ maior.
ſed erat minor; quod rurſus fieri non po-
teſt.
non eſt igitur conus, uel coni portio x neque maior,
neque minor p_y_ramide_y_.
ergo ipſi neceſſario eſt æqualis.