Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of figures

< >
[Figure 91]
[Figure 92]
[Figure 93]
[Figure 94]
[Figure 95]
[Figure 96]
[Figure 97]
[Figure 98]
[Figure 99]
[Figure 100]
[Figure 101]
[Figure 102]
[Figure 103]
[Figure 104]
[Figure 105]
[Figure 106]
[Figure 107]
[Figure 108]
[Figure 109]
[Figure 110]
[Figure 111]
[Figure 112]
[Figure 113]
[Figure 114]
[Figure 115]
[Figure 116]
[Figure 117]
[Figure 118]
[Figure 119]
[Figure 120]
< >
page |< < of 213 > >|
136FED. COMMANDINI medis. ergo punctum v extra p riſima a f poſitum, centrũ
erit magnitudinis cõpoſitæ e x omnibus priſmatibus g z r,
r β t, t γ x, x δ k, k δ y, y u, u s, s α h, quod fieri nullo modo po
teſt.
eſt enim ex diſſinitione centrum grauitatis ſolidæ figu
ræ intra ipſam poſitum, non extra.
quare relinquitur, ut cẽ
trum grauitatis priſmatis ſit in linea K m.
Rurſus b c bifa-
riam in ξ diuidatur:
& ducta a ξ, per ipſam, & per lineam
a g d plan um ducatur;
quod priſma ſecet: faciatq; in paral
lelogrammo b f ſectionem ξ π di uidet punctum π lineam
quoque c f bifariam:
& erit p lani eius, & trianguli g h K
communis ſectio g u;
quòd p ũctum u in inedio lineæ h K
91[Figure 91] poſitum ſi t.
Similiter demonſtrabimus centrum grauita-
tis priſm atis in ipſa g u ineſſe.
ſit autem planorum c f n l,
a d π ξ communis ſectio linea ρ ο τ quæ quidem priſmatis
axis erit, cum tranſeat per centra grauitatis triangulorum
a b c, g h k, d e f, ex quartadecima eiuſdem.
ergo centrum
grauitatis pri ſmatis a f eſt punctum σ, centrum

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index