Cardano, Geronimo, Offenbarung der Natur und natürlicher dingen auch mancherley subtiler würckungen

Table of figures

< >
[91. Figure]
[92. Figure: Frigula. Habitabilis Borea@is. Ecliptica Tor ri da Habitabilis Auſhalis. Frigida. (Variables: 23{1/2} c 23{1/2} g 43 m 23{1/2} b 23{1/2} n 43 f 23{1/2} d 23{1/2} h 43 l 23{1/2} a 23{1/2} k 43 47 47)]
[93. Figure (Variables: a d e f g c b)]
[94. Figure (Variables: c a b e f d)]
[95. Figure (Variables: A E C D G H M N L B F)]
[96. Figure (Variables: A B C V E D)]
[97. Figure]
[98. Figure (Variables: a d c b e)]
[99. Figure: Arcticus Orient. Occides. Antarcti. (Variables: c a b d)]
[100. Figure (Variables: @ e f d g c a)]
[101. Figure]
[102. Figure]
[103. Figure (Variables: c d b a)]
[104. Figure (Variables: a c b d g l e l f)]
[105. Figure (Variables: a b c d e f k g h o)]
[106. Figure (Variables: d e a b c)]
[107. Figure (Variables: b a e d c)]
[108. Figure: Tetra cedron.]
[109. Figure: Exace dron.]
[110. Figure: Octo cedron]
[111. Figure: Icoſa he dron.]
[112. Figure]
[113. Figure]
[114. Figure: Gn@m@.]
[115. Figure (Variables: a g h b e m n f c k l d 1)]
[116. Figure (Variables: g h b e m n f c k l d 2)]
[117. Figure (Variables: a k l m b e q r g f ſ t h c n o p d 3)]
[118. Figure (Variables: a g h b e m n f c k l d 4)]
[119. Figure (Variables: a k b e m g f n h c l d 5)]
[120. Figure (Variables: a b c d 1)]
< >
page |< < (dxlvij) of 997 > >|
ſachen/ Das dreizehend bůch.
    <echo version="1.0RC">
      <text xml:lang="de" type="free">
        <div type="section" level="1" n="71">
          <p>
            <s xml:space="preserve">
              <pb o="dxlvij" file="0603" n="603" rhead="ſachen/ Das dreizehend bůch."/>
            drum wölcher ein corpus hat/ ſo von acht triangel vnnd ſuperficien geord-
              <lb/>
            net/ vnd allein ſechs gantze eck.</s>
            <s xml:space="preserve"/>
          </p>
          <p>
            <s xml:space="preserve">Alſo machet man ein Icocedron. </s>
            <s xml:space="preserve">man nim̃et ein gerade linien/ vnd theilt
              <lb/>
            diſe zů geleich in fünff theil/ vnd machet zwen triangel mit geleichen ſeytẽ/
              <lb/>
            auff beiden auſſereſten theilen/ von einẽ orth har/ demnach durch der ſelbi-
              <lb/>
            gen triangelen ſpitz/ ſoll von der einen als
              <lb/>
              <anchor type="figure" xlink:label="fig-0603-01a" xlink:href="fig-0603-01"/>
            von dem zeil ein andere gerade linien gezo
              <lb/>
            gen werden/ ſo der erſten geleich ſeye/ wöl-
              <lb/>
            che nach {der} höche auch ſo weyt ſoll fürghen/
              <lb/>
            demnach ſoll die ſelbige auch in fünff glei-
              <lb/>
            che theil abgetheilet werden/ vnnd an den
              <lb/>
            auſſeren orthen ſo am weyteſten fürghond/ zů beiden ſeyten zwo linien zie-
              <lb/>
            chen/ wölche als weyt für den auſſerſten theil/ da er am kürtzeſtẽ iſt ghond/
              <lb/>
            wie die linien ſo vnderſcheiden iſt. </s>
            <s xml:space="preserve">aber ſieben mittel linien/ wañ vier paral-
              <lb/>
            lelen vnd linien ſo gleich weyt von einan{der} ſthond/ bey beidẽ auſſerſtẽ ſchon
              <lb/>
            fürgezogẽ/ vnd iij wölche die ſelbe abgebrochene zů beidẽ orthẽ in gleich zer-
              <lb/>
            theilẽ/ vnd zů letſt mit den ſelbigẽ iij zwẽ parallelas/ an {der} auſſereſten ſo baß
              <lb/>
            eingezogẽ/ ye der lengeren linien nach/ durch die erſte abtheilung der ande-
              <lb/>
            ren linien. </s>
            <s xml:space="preserve">alſo auch an der liniẽ durch welcher zertheilung ſie ghet/ vñ auch
              <lb/>
            zwo andere/ die gleich weyt daruon ſeind/ wölche alle triangel machẽ/ alſo
              <lb/>
            dz in gemein/ über die erſtẽ ij lengſte/ xiij linien ſeyen/ wölche xx trigonos
              <lb/>
            machen/ wie du hie ſichſt. </s>
            <s xml:space="preserve">vñ alſo auffgericht/ dz derẽ fünff ein gantz eck ma
              <lb/>
            chen/ vnd wer{der}en den Icoſahedron mit fünff eck beſtim̃en/ aber allein mit
              <lb/>
            xij gantzen eckẽ. </s>
            <s xml:space="preserve">Alſo ſichſt du dz auß iij fürnẽbſten corporẽ/ wölche mit trian
              <lb/>
            gel figuren vm̃geben/ zwar eines ſteyffen o{der} gantzẽ eck/ dz iſt einen tetrace-
              <lb/>
            dron mit iij trianglen/ vnd den andetẽ mit iiij octocedren/ vñ den drittẽ/ ſo
              <lb/>
            mit fünff jcoſacedren verordnet. </s>
            <s xml:space="preserve">Ob wol aber {der} Duodecedron o{der} xij eckech-
              <lb/>
            tig/ auch auß einer figur beſthen möchte wie die anderẽ/ wirt er doch komli
              <lb/>
            cher mit ij oder der geleichẽ beſchri-
              <lb/>
              <anchor type="figure" xlink:label="fig-0603-02a" xlink:href="fig-0603-02"/>
            ben. </s>
            <s xml:space="preserve">Darũb ſoll man zů erſt ij Pen-
              <lb/>
            tagonen vnd fünff eckechte verord-
              <lb/>
            nẽ ſo einanderẽ gleich/ darzů gleich
              <lb/>
            ſeytẽ vñ eck habẽ/ man ſoll auch vff
              <lb/>
            ein yede ſeytẽ an beidẽ/ anderere pẽ
              <lb/>
            tagonen ſetzẽ/ die auch gleich an ſey
              <lb/>
            ten vnd eckẽ ſeyen. </s>
            <s xml:space="preserve">Alſo werdend es
              <lb/>
              <anchor type="note" xlink:label="note-0603-01a" xlink:href="note-0603-01"/>
            mit den erſtẽ xij ſein/ wie du in diſer
              <lb/>
            figur ſehen magſt. </s>
            <s xml:space="preserve">darũb ſoll {der} mitt
              <lb/>
            telſt/ wie auch in dẽ Hexacedro vnd
              <lb/>
            tetracedro für ein fundamẽt verord
              <lb/>
            net ſein. </s>
            <s xml:space="preserve">alſo werden durch die zwo
              <lb/>
            beſchloßen vnd auffgerichtẽ penta-
              <lb/>
            gonen zwo figur mit fünff ſpitzen/
              <lb/>
            vnd ſo vyl lären ſpacien/ alſo wann
              <lb/>
            eines auff dem anderen geſetzet/ daß das corpus ſo fünff pentagonẽ haltet/
              <lb/>
            erfüllet werde/ darzů mit xx gantzenn ecken. </s>
            <s xml:space="preserve">dann wie in einem Icoſahe-
              <lb/>
            dro fünff trigoni zůſammen kommend/ alſo hargegenn drey Pentagoni in
              <lb/>
            einem duodecedron. </s>
            <s xml:space="preserve">damitt du aber diſe pentagonenn deſter leichtlicher</s>
          </p>
        </div>
      </text>
    </echo>