Cardano, Geronimo, Offenbarung der Natur und natürlicher dingen auch mancherley subtiler würckungen

Table of figures

< >
[91. Figure]
[92. Figure: Frigula. Habitabilis Borea@is. Ecliptica Tor ri da Habitabilis Auſhalis. Frigida. (Variables: 23{1/2} c 23{1/2} g 43 m 23{1/2} b 23{1/2} n 43 f 23{1/2} d 23{1/2} h 43 l 23{1/2} a 23{1/2} k 43 47 47)]
[93. Figure (Variables: a d e f g c b)]
[94. Figure (Variables: c a b e f d)]
[95. Figure (Variables: A E C D G H M N L B F)]
[96. Figure (Variables: A B C V E D)]
[97. Figure]
[98. Figure (Variables: a d c b e)]
[99. Figure: Arcticus Orient. Occides. Antarcti. (Variables: c a b d)]
[100. Figure (Variables: @ e f d g c a)]
[101. Figure]
[102. Figure]
[103. Figure (Variables: c d b a)]
[104. Figure (Variables: a c b d g l e l f)]
[105. Figure (Variables: a b c d e f k g h o)]
[106. Figure (Variables: d e a b c)]
[107. Figure (Variables: b a e d c)]
[108. Figure: Tetra cedron.]
[109. Figure: Exace dron.]
[110. Figure: Octo cedron]
[111. Figure: Icoſa he dron.]
[112. Figure]
[113. Figure]
[114. Figure: Gn@m@.]
[115. Figure (Variables: a g h b e m n f c k l d 1)]
[116. Figure (Variables: g h b e m n f c k l d 2)]
[117. Figure (Variables: a k l m b e q r g f ſ t h c n o p d 3)]
[118. Figure (Variables: a g h b e m n f c k l d 4)]
[119. Figure (Variables: a k b e m g f n h c l d 5)]
[120. Figure (Variables: a b c d 1)]
< >
page |< < (dxlix) of 997 > >|
ſachen/ Das dreizehend bůch.
    <echo version="1.0RC">
      <text xml:lang="de" type="free">
        <div type="section" level="1" n="71">
          <p>
            <s xml:space="preserve">
              <pb o="dxlix" file="0605" n="605" rhead="ſachen/ Das dreizehend bůch."/>
            in mehrtheil abſünderen/ die kürtzere in weniger/ namlich in eine minder.
              <lb/>
            </s>
            <s xml:space="preserve">Wann wir auch lenger tiſch machen wöllen/ ſollẽ wir die lengere ſeytẽ in we
              <lb/>
            niger theil/ vnnd die kürtzere in mehrtheil/
              <lb/>
              <anchor type="figure" xlink:label="fig-0605-01a" xlink:href="fig-0605-01"/>
              <anchor type="figure" xlink:label="fig-0605-02a" xlink:href="fig-0605-02"/>
              <anchor type="figure" xlink:label="fig-0605-03a" xlink:href="fig-0605-03"/>
              <anchor type="figure" xlink:label="fig-0605-04a" xlink:href="fig-0605-04"/>
              <anchor type="figure" xlink:label="fig-0605-05a" xlink:href="fig-0605-05"/>
              <anchor type="figure" xlink:label="fig-0605-06a" xlink:href="fig-0605-06"/>
            namlich eine mehr abtheilen. </s>
            <s xml:space="preserve">Zům vierten/
              <lb/>
            wañ wir etwas wöllen zů der ſeyten thůn/
              <lb/>
            ſollen wir auß {der} ſeyten nem̃en. </s>
            <s xml:space="preserve">ein exẽpel in
              <lb/>
            der erſtẽ figur. </s>
            <s xml:space="preserve">der kurtzen ſeyten ſeyẽ zwo/
              <lb/>
            vnd {der} lengerẽ ſechs. </s>
            <s xml:space="preserve">Ich wolt aber gern ein
              <lb/>
            figur machen die vier lenge vñ drey breitte
              <lb/>
            hette. </s>
            <s xml:space="preserve">weil ich nun ein kürtzere ſeyten (nam
              <lb/>
            lich zwo) machen wolt/ daß es drey ſeyend/
              <lb/>
            vnd drey/ die zwey vm̃ eins übertreffen/ ſo
              <lb/>
            theil ich A C vnd B D in zwẽ geleiche theil/
              <lb/>
            alſo dz ein yeder eins ſeye. </s>
            <s xml:space="preserve">darũb diuidier vñ
              <lb/>
            zertheil ich nach dẽ dritten gebott das A B
              <lb/>
            vnd C D in drey geleiche theil/ darnach ſetz
              <lb/>
            ich das richtſcheit (diſes iſt ein inſtrument
              <lb/>
            auß metall o{der} holtz von den werckmeiſterẽ
              <lb/>
            bereittet/ wölches ein grad eck haltet eigent
              <lb/>
            lich nach den geſtrackten linien/ breit vnnd
              <lb/>
            dick/ damit es ſich nit biege/ wölches gſtalt
              <lb/>
            wir vorhin an {der} ſeyten angezeigt) auff das
              <lb/>
            G vnd E/ vnd verzeichnen alſo den punc-
              <lb/>
            ten M in deß richtſcheit eck/ vnd ſetze dann
              <lb/>
            auch dz richtſcheit auff F vnd S/ vnd ver-
              <lb/>
            zeichnen N. </s>
            <s xml:space="preserve">wañ man nun gerade linien G
              <lb/>
            M vnd M N/ vnd N L zeücht/ vnd die fi
              <lb/>
            gur G M N L/ D B abſchneidet/ wañ die
              <lb/>
            rechte linien M N ob dẽ A G zůſamen kom̃et/ wirt dz L D
              <lb/>
            mit derẽ auff M N fallen/ vnd haſt du alſo/ wañ diſe zůſa-
              <lb/>
            men kom̃en/ wz du gefragt haſt. </s>
            <s xml:space="preserve">Alſo wañ du auch begerſt dz
              <lb/>
            in der fünfften figur auß A B C D/ wölches ſeyten A B vñ
              <lb/>
            C D ſechs ſeyen/ vnd A C auch B D vier/ jx lenge machen/
              <lb/>
            wirt der vnderſcheid zwiſchen jx vnd vj/ iij ſein. </s>
            <s xml:space="preserve">weil ich auch diſes will len-
              <lb/>
            ger machen/ ſůch ich wie offt ich drey in ſechs haben möge/ nãlich A B vnd
              <lb/>
            C D {der} lengeren ſeytẽ/ vnd ſich dz es der halb theil iſt. </s>
            <s xml:space="preserve">deßhalbẽ theil ich A B
              <lb/>
            vñ D C durch gleiche theil/ vñ durch dz dritt gebott A C vñ B D in iij theil
              <lb/>
            vñ ſetz dañ dz richtſcheit o{der} winckelmeß auff die punctẽ K vñ E/ deßgleichẽ
              <lb/>
            auff dz H vñ L/ vnd find die punctẽ M vñ N. </s>
            <s xml:space="preserve">dañ zeüch ich liniẽ/ vnd theil
              <lb/>
            A B C D in zwo figur A C M N H B vñ E C D H N M. </s>
            <s xml:space="preserve">vñ ſetz dañ EM
              <lb/>
            auff N H/ ſo fallet A K eigentlich auff E M/ vnd wirt ein figur die jx len
              <lb/>
            ge hat/ auch in {der} breite wie E C/ dz iſt ij vñ ein viij theil. </s>
            <s xml:space="preserve">Dz fünfft iſt/ wã du
              <lb/>
            begerſt etwz zů einẽ rechtẽ quadraten zů bringẽ/ ſo můß die proportz {der} langẽ
              <lb/>
            ſeytẽ zů dẽ kurtzẽ/ wie zweyer quadratẽ zal ſein/ wölcher vrſprũg in einẽ vn-
              <lb/>
            derſcheiden. </s>
            <s xml:space="preserve">Ein exempel in {der} dritten figur. </s>
            <s xml:space="preserve">A B ſeye vier vnd ein halbs/ A
              <lb/>
            C ſeye deren zwey/ ſo iſt die proportz wie neün zů vier. </s>
            <s xml:space="preserve">deren zalen radices vñ
              <lb/>
            vrſprung ſeind zwey vnnd drey/ ſo an dem einen vnderſcheiden. </s>
            <s xml:space="preserve">deßhalben
              <lb/>
            theilẽ wir nach dẽ drittẽ gebott A B vnd C D in drey theil/ A C vnd B D in</s>
          </p>
        </div>
      </text>
    </echo>