Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of figures

< >
[Figure 91]
[Figure 92]
[Figure 93]
[Figure 94]
[Figure 95]
[Figure 96]
[Figure 97]
[Figure 98]
[Figure 99]
[Figure 100]
[Figure 101]
[Figure 102]
[Figure 103]
[Figure 104]
[Figure 105]
[Figure 106]
[Figure 107]
[Figure 108]
[Figure 109]
[Figure 110]
[Figure 111]
[Figure 112]
[Figure 113]
[Figure 114]
[Figure 115]
[Figure 116]
[Figure 117]
[Figure 118]
[Figure 119]
[Figure 120]
< >
page |< < (15) of 213 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div216" type="section" level="1" n="73">
          <p>
            <s xml:id="echoid-s3584" xml:space="preserve">
              <pb o="15" file="0141" n="141" rhead="DE CENTRO GRAVIT. SOLID."/>
            bere proportionem, quam ſpacium g h ad dictã
              <lb/>
            figuram, hoc modo demonſtrabimus.</s>
            <s xml:id="echoid-s3585" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s3586" xml:space="preserve">Intelligatur circulus, uel ellipſis x æqualis figuræ rectili-
              <lb/>
            neæ in g h ſpacio deſcriptæ: </s>
            <s xml:id="echoid-s3587" xml:space="preserve">& </s>
            <s xml:id="echoid-s3588" xml:space="preserve">ab x conſtituatur conus, uel
              <lb/>
              <figure xlink:label="fig-0141-01" xlink:href="fig-0141-01a" number="95">
                <image file="0141-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0141-01"/>
              </figure>
            coni portio, altitudinẽ habens eandẽ, quã cylindrus uel cy
              <lb/>
            lindri portio c e. </s>
            <s xml:id="echoid-s3589" xml:space="preserve">Sit deinde rectilinea figura, in quay eade,
              <lb/>
            quæ in ſpacio g h deſcripta eſt: </s>
            <s xml:id="echoid-s3590" xml:space="preserve">& </s>
            <s xml:id="echoid-s3591" xml:space="preserve">ab hac pyramis æquealta
              <lb/>
            conſtituatur. </s>
            <s xml:id="echoid-s3592" xml:space="preserve">Dico conũ uel coni portionẽ x pyramidiy æ-
              <lb/>
            qualẽ eſſe. </s>
            <s xml:id="echoid-s3593" xml:space="preserve">niſi enim ſit æqualis, uel maior, uel minor erit.</s>
            <s xml:id="echoid-s3594" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s3595" xml:space="preserve">Sit primum maior, et exuperet ſolido z. </s>
            <s xml:id="echoid-s3596" xml:space="preserve">Itaque in circu
              <lb/>
            lo, uel ellipſi x deſcribatur figura rectilinea; </s>
            <s xml:id="echoid-s3597" xml:space="preserve">& </s>
            <s xml:id="echoid-s3598" xml:space="preserve">in ea pyra-
              <lb/>
            mis eandem, quam conus, uel coni portio altitudinem ha-
              <lb/>
            bens, ita ut portiones relictæ minores ſint ſolido z, quem-
              <lb/>
            admodum docetur in duodecimo libro elementorum pro
              <lb/>
            poſitione undecima. </s>
            <s xml:id="echoid-s3599" xml:space="preserve">erit pyramis x adhuc pyramide y ma
              <lb/>
            ior. </s>
            <s xml:id="echoid-s3600" xml:space="preserve">& </s>
            <s xml:id="echoid-s3601" xml:space="preserve">quoniam piramides æque altæ inter ſe ſunt, ſicuti ba
              <lb/>
              <note position="right" xlink:label="note-0141-01" xlink:href="note-0141-01a" xml:space="preserve">6. duode-
                <lb/>
              cimi.</note>
            ſes; </s>
            <s xml:id="echoid-s3602" xml:space="preserve">pyramis x ad piramidem y eandem proportionem ha-
              <lb/>
            bet, quàm figura rectilinea x ad figuram y. </s>
            <s xml:id="echoid-s3603" xml:space="preserve">Sed ſigura </s>
          </p>
        </div>
      </text>
    </echo>