Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

#### Table of figures

< >
[Figure 111]
[Figure 112]
[Figure 113]
[Figure 114]
[Figure 115]
[Figure 116]
[Figure 117]
[Figure 118]
[Figure 119]
[Figure 120]
[Figure 121]
[Figure 122]
[Figure 123]
[Figure 124]
[Figure 125]
[Figure 126]
[Figure 127]
[Figure 128]
[Figure 129]
[Figure 130]
[Figure 131]
[Figure 132]
[Figure 133]
[Figure 134]
[Figure 135]
[Figure 136]
[Figure 137]
[Figure 138]
[Figure 139]
[Figure 140]
< >
page |< < (18) of 213 > >|
14718DE CENTRO GRAVIT. SOLID. tione quarta Apollonius demonſtrauit. Si igitur à ſingu-
lis horum circulorum, duo cylindri fiant;
baſis partes;
alter ad partes uerticis: inſcripta erit in co-
no ſolida quædam figura, &
altera circumſcripta ex cylin-
dris æqualem altitudinem habentibus conſtans;
quorum
unuſquiſque, qui in
figura inſcripta con-
tinetur æqualis eſt ei,
qui ab eodem fit cir-
culo in figura circũ-
ſcripta.
Itaque cylin
drus o p æqualis eſt
cylindro o n;
cylin-
drus r s cylĩdro r q;
cylindrus u x cylin-
dro u t cſt æqualis;

&
alii aliis ſimiliter.
quare conſtat circũ-
ſcriptam figuram ſu-
perare inſcriptam cy
lindro, cuius baſis eſt
circulus circa diametrum a c, &
axis d e. atque hic eſtmi-
nor ſolida magnitudine propoſita.
PROBLEMA III. PROPOSITIO XII.
Data coni portione, poteſt ſolida quædam
figura inſcribi, &
altera circumſcribi ex cylindri
portionibus æqualem altitudinem habentibus;
ita ut circumſcripta inſcriptam exuperet, magni
tudine, quæ minor ſit ſolida magnitudine pro-
poſita.