Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Table of handwritten notes
<
1 - 8
>
[Handwritten note 1]
Page: 2
[Handwritten note 2]
Page: 2
[Handwritten note 3]
Page: 4
[Handwritten note 4]
Page: 4
[Handwritten note 5]
Page: 4
[Handwritten note 6]
Page: 5
[Handwritten note 7]
Page: 121
[Handwritten note 8]
Page: 167
<
1 - 8
>
page
|<
<
(4)
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div199
"
type
="
section
"
level
="
1
"
n
="
65
">
<
p
>
<
s
xml:id
="
echoid-s2993
"
xml:space
="
preserve
">
<
pb
o
="
4
"
file
="
0119
"
n
="
119
"
rhead
="
DE CENTRO GRAVIT. SOLID.
"/>
o n ipſi a c. </
s
>
<
s
xml:id
="
echoid-s2994
"
xml:space
="
preserve
">Quoniam enim triangulorum a b k, a d k, latus
<
lb
/>
b k eſt æquale lateri k d, & </
s
>
<
s
xml:id
="
echoid-s2995
"
xml:space
="
preserve
">a k utrique commune; </
s
>
<
s
xml:id
="
echoid-s2996
"
xml:space
="
preserve
">anguliq́;
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s2997
"
xml:space
="
preserve
">ad k recti baſis a b baſi a d; </
s
>
<
s
xml:id
="
echoid-s2998
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s2999
"
xml:space
="
preserve
">reliqui anguli reliquis an-
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0119-01
"
xlink:href
="
note-0119-01a
"
xml:space
="
preserve
">8. primi</
note
>
gulis æquales erunt. </
s
>
<
s
xml:id
="
echoid-s3000
"
xml:space
="
preserve
">eadem quoqueratione oſtendetur b c
<
lb
/>
æqualis c d; </
s
>
<
s
xml:id
="
echoid-s3001
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3002
"
xml:space
="
preserve
">a b ipſi
<
lb
/>
<
figure
xlink:label
="
fig-0119-01
"
xlink:href
="
fig-0119-01a
"
number
="
75
">
<
image
file
="
0119-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0119-01
"/>
</
figure
>
b c. </
s
>
<
s
xml:id
="
echoid-s3003
"
xml:space
="
preserve
">quare omnes a b,
<
lb
/>
b c, c d, d a ſunt æqua-
<
lb
/>
les. </
s
>
<
s
xml:id
="
echoid-s3004
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3005
"
xml:space
="
preserve
">quoniam anguli
<
lb
/>
ad a æquales ſunt angu
<
lb
/>
lis ad c; </
s
>
<
s
xml:id
="
echoid-s3006
"
xml:space
="
preserve
">erunt anguli b
<
lb
/>
a c, a c d coalterni inter
<
lb
/>
ſe æquales; </
s
>
<
s
xml:id
="
echoid-s3007
"
xml:space
="
preserve
">itemq́; </
s
>
<
s
xml:id
="
echoid-s3008
"
xml:space
="
preserve
">d a c,
<
lb
/>
a c b. </
s
>
<
s
xml:id
="
echoid-s3009
"
xml:space
="
preserve
">ergo c d ipſi b a;
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s3010
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3011
"
xml:space
="
preserve
">a d ipſi b c æquidi-
<
lb
/>
ſtat. </
s
>
<
s
xml:id
="
echoid-s3012
"
xml:space
="
preserve
">Atuero cum lineæ
<
lb
/>
a b, c d inter ſe æquidi-
<
lb
/>
ſtantes bifariam ſecen-
<
lb
/>
tur in punctis e g; </
s
>
<
s
xml:id
="
echoid-s3013
"
xml:space
="
preserve
">erit li
<
lb
/>
nea l e k g n diameter ſe
<
lb
/>
ctionis, & </
s
>
<
s
xml:id
="
echoid-s3014
"
xml:space
="
preserve
">linea una, ex
<
lb
/>
demonſtratis in uigeſi-
<
lb
/>
ma octaua ſecundi coni
<
lb
/>
corum. </
s
>
<
s
xml:id
="
echoid-s3015
"
xml:space
="
preserve
">Et eadem ratione linea una m f k h o. </
s
>
<
s
xml:id
="
echoid-s3016
"
xml:space
="
preserve
">Sunt autẽ a d,
<
lb
/>
b c inter ſe ſe æquales, & </
s
>
<
s
xml:id
="
echoid-s3017
"
xml:space
="
preserve
">æquidiſtantes. </
s
>
<
s
xml:id
="
echoid-s3018
"
xml:space
="
preserve
">quare & </
s
>
<
s
xml:id
="
echoid-s3019
"
xml:space
="
preserve
">earum di-
<
lb
/>
midiæ a h, b f; </
s
>
<
s
xml:id
="
echoid-s3020
"
xml:space
="
preserve
">itemq́; </
s
>
<
s
xml:id
="
echoid-s3021
"
xml:space
="
preserve
">h d, f e; </
s
>
<
s
xml:id
="
echoid-s3022
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3023
"
xml:space
="
preserve
">quæ ipſas coniunguntrectæ
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0119-02
"
xlink:href
="
note-0119-02a
"
xml:space
="
preserve
">33. primit</
note
>
lineæ æquales, & </
s
>
<
s
xml:id
="
echoid-s3024
"
xml:space
="
preserve
">æquidiſtantes erunt. </
s
>
<
s
xml:id
="
echoid-s3025
"
xml:space
="
preserve
">æquidiſtãt igitur b a,
<
lb
/>
c d diametro m o: </
s
>
<
s
xml:id
="
echoid-s3026
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3027
"
xml:space
="
preserve
">pariter a d, b c ipſi l n æquidiſtare o-
<
lb
/>
ſtendemus. </
s
>
<
s
xml:id
="
echoid-s3028
"
xml:space
="
preserve
">Si igitur manẽte diametro a c intelligatur a b c
<
lb
/>
portio ellipſis ad portionem a d c moueri, cum primum b
<
lb
/>
applicuerit ad d, cõgruet tota portio toti portioni, lineaq́;
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s3029
"
xml:space
="
preserve
">b a lineæ a d; </
s
>
<
s
xml:id
="
echoid-s3030
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3031
"
xml:space
="
preserve
">b c ipſi c d congruet: </
s
>
<
s
xml:id
="
echoid-s3032
"
xml:space
="
preserve
">punctum uero e ca-
<
lb
/>
det in h; </
s
>
<
s
xml:id
="
echoid-s3033
"
xml:space
="
preserve
">f in g: </
s
>
<
s
xml:id
="
echoid-s3034
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3035
"
xml:space
="
preserve
">linea k e in lineam k h: </
s
>
<
s
xml:id
="
echoid-s3036
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3037
"
xml:space
="
preserve
">k f in k g. </
s
>
<
s
xml:id
="
echoid-s3038
"
xml:space
="
preserve
">qua
<
lb
/>
re & </
s
>
<
s
xml:id
="
echoid-s3039
"
xml:space
="
preserve
">el in h o, et fm in g n. </
s
>
<
s
xml:id
="
echoid-s3040
"
xml:space
="
preserve
">Atipſa lz in z o; </
s
>
<
s
xml:id
="
echoid-s3041
"
xml:space
="
preserve
">et m φ in φ n
<
lb
/>
cadet. </
s
>
<
s
xml:id
="
echoid-s3042
"
xml:space
="
preserve
">congruet igitur triangulum l k z triangulo o k z: </
s
>
<
s
xml:id
="
echoid-s3043
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
</
text
>
</
echo
>