Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Table of handwritten notes
<
1 - 8
>
[Handwritten note 1]
Page: 2
[Handwritten note 2]
Page: 2
[Handwritten note 3]
Page: 4
[Handwritten note 4]
Page: 4
[Handwritten note 5]
Page: 4
[Handwritten note 6]
Page: 5
[Handwritten note 7]
Page: 121
[Handwritten note 8]
Page: 167
<
1 - 8
>
page
|<
<
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div254
"
type
="
section
"
level
="
1
"
n
="
87
">
<
p
>
<
s
xml:id
="
echoid-s4256
"
xml:space
="
preserve
">
<
pb
file
="
0170
"
n
="
170
"
rhead
="
FED. COMMANDINI
"/>
& </
s
>
<
s
xml:id
="
echoid-s4257
"
xml:space
="
preserve
">denique punctum h pyramidis a b c d e f grauitatis eſſe
<
lb
/>
centrum, & </
s
>
<
s
xml:id
="
echoid-s4258
"
xml:space
="
preserve
">ita in aliis.</
s
>
<
s
xml:id
="
echoid-s4259
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4260
"
xml:space
="
preserve
">Sit conus, uel coni portio axem habens b d: </
s
>
<
s
xml:id
="
echoid-s4261
"
xml:space
="
preserve
">ſecetur que
<
lb
/>
plano per axem, quod ſectionem faciat triangulum a b c:
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s4262
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4263
"
xml:space
="
preserve
">b d axis diuidatur in e, ita ut b e ipſius e d ſit tripla. </
s
>
<
s
xml:id
="
echoid-s4264
"
xml:space
="
preserve
">
<
lb
/>
Dico punctum e coni, uel coni portionis, grauitatis
<
lb
/>
eſſe centrum. </
s
>
<
s
xml:id
="
echoid-s4265
"
xml:space
="
preserve
">Sienim fieri poteſt, ſit centrum f: </
s
>
<
s
xml:id
="
echoid-s4266
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4267
"
xml:space
="
preserve
">pro-
<
lb
/>
ducatur e f extra figuram in g. </
s
>
<
s
xml:id
="
echoid-s4268
"
xml:space
="
preserve
">quam uero proportionem
<
lb
/>
habet g e ad e f, habeat baſis coni, uel coni portionis, hoc
<
lb
/>
eſt circulus, uel ellipſis circa diametrum a c ad aliud ſpa-
<
lb
/>
cium, in quo h. </
s
>
<
s
xml:id
="
echoid-s4269
"
xml:space
="
preserve
">Itaque in circulo, uel ellipſi plane deſcri-
<
lb
/>
batur rectilinea figura a k l m c n o p, ita ut quæ relinquũ-
<
lb
/>
tur portiones ſint minores ſpacio h: </
s
>
<
s
xml:id
="
echoid-s4270
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4271
"
xml:space
="
preserve
">intelligatur pyra-
<
lb
/>
mis baſim habens rectilineam figuram a K l m c n o p, & </
s
>
<
s
xml:id
="
echoid-s4272
"
xml:space
="
preserve
">
<
lb
/>
axem b d; </
s
>
<
s
xml:id
="
echoid-s4273
"
xml:space
="
preserve
">cuius quidem grauitatis centrum erit punctum
<
lb
/>
e, ut iam demonſtrauimus. </
s
>
<
s
xml:id
="
echoid-s4274
"
xml:space
="
preserve
">Et quoniam portiones ſunt
<
lb
/>
minores ſpacio h, circulus, uel ellipſis ad portiones ma-
<
lb
/>
<
figure
xlink:label
="
fig-0170-01
"
xlink:href
="
fig-0170-01a
"
number
="
125
">
<
image
file
="
0170-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0170-01
"/>
</
figure
>
iorem proportionem habet, quam g e a d e f. </
s
>
<
s
xml:id
="
echoid-s4275
"
xml:space
="
preserve
">ſed ut circu-
<
lb
/>
lus, uel ellipſis ad figuram rectilineam ſibi inſcriptam, ita
<
lb
/>
conus, uel coni portio ad pyramidem, quæ figuram rectili-
<
lb
/>
neam pro baſi habet; </
s
>
<
s
xml:id
="
echoid-s4276
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4277
"
xml:space
="
preserve
">altitudinem æqualem: </
s
>
<
s
xml:id
="
echoid-s4278
"
xml:space
="
preserve
">etenim </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>