Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Table of handwritten notes
<
1 - 8
[out of range]
>
<
1 - 8
[out of range]
>
page
|<
<
(23)
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div240
"
type
="
section
"
level
="
1
"
n
="
83
">
<
p
>
<
s
xml:id
="
echoid-s3912
"
xml:space
="
preserve
">
<
pb
o
="
23
"
file
="
0157
"
n
="
157
"
rhead
="
DE CENTRO GRAVIT. SOLID.
"/>
eſtſolidi g m altitudo ad o e altitudinem ſolidi m c, uel quã
<
lb
/>
axis k q ad q l axem. </
s
>
<
s
xml:id
="
echoid-s3913
"
xml:space
="
preserve
">Si uero axis k l non ſit perpendicularis
<
lb
/>
ad planum baſis; </
s
>
<
s
xml:id
="
echoid-s3914
"
xml:space
="
preserve
">ducatur a puncto k ad idem planum per
<
lb
/>
pendicularis k r, occurrẽs plano m n o p in s. </
s
>
<
s
xml:id
="
echoid-s3915
"
xml:space
="
preserve
">ſimiliter de-
<
lb
/>
mõſtrabimus ſolidum g m ad ſoli
<
gap
/>
m c ita eſſe, ut axis k q
<
lb
/>
ad axem q l. </
s
>
<
s
xml:id
="
echoid-s3916
"
xml:space
="
preserve
">Sed ut K q ad q l, ita k s altitudo ad altitudi-
<
lb
/>
nem s r, nam lineæ K l, K r à planis æquidiſtantibus in eaſ-
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0157-01
"
xlink:href
="
note-0157-01a
"
xml:space
="
preserve
">17. unde-
<
lb
/>
cimi</
note
>
dem proportiones ſecantur. </
s
>
<
s
xml:id
="
echoid-s3917
"
xml:space
="
preserve
">ergo ſolidum g m ad ſolidum
<
lb
/>
m c eandẽ proportionem habet, quam altitudo ad altitu
<
lb
/>
dinẽ, uel quam axis ad axem. </
s
>
<
s
xml:id
="
echoid-s3918
"
xml:space
="
preserve
">quod demõſtrare oportebat.</
s
>
<
s
xml:id
="
echoid-s3919
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div242
"
type
="
section
"
level
="
1
"
n
="
84
">
<
head
xml:id
="
echoid-head91
"
xml:space
="
preserve
">THEOREMA XV. PROPOSITIO XIX.</
head
>
<
p
>
<
s
xml:id
="
echoid-s3920
"
xml:space
="
preserve
">Solida parallelepipedain eadem baſi, uel in
<
lb
/>
æqualibus baſibus conſtituta eam inter ſe propor
<
lb
/>
tionem habent, quam altitudines: </
s
>
<
s
xml:id
="
echoid-s3921
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3922
"
xml:space
="
preserve
">ſi axes ipſo-
<
lb
/>
rum cum baſibus æquales angulos contineant,
<
lb
/>
eam quoque, quam axes proportionem habebũt.</
s
>
<
s
xml:id
="
echoid-s3923
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s3924
"
xml:space
="
preserve
">Sint ſolida parallelepipeda in eadẽ baſi cõſtituta a b c d,
<
lb
/>
a b e f: </
s
>
<
s
xml:id
="
echoid-s3925
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3926
"
xml:space
="
preserve
">ſit ſolidi a b c d altitudo minor: </
s
>
<
s
xml:id
="
echoid-s3927
"
xml:space
="
preserve
">producatur au-
<
lb
/>
tem planum c d adeo, utſolidum a b e f ſecet; </
s
>
<
s
xml:id
="
echoid-s3928
"
xml:space
="
preserve
">cuius ſectio
<
lb
/>
ſit g h. </
s
>
<
s
xml:id
="
echoid-s3929
"
xml:space
="
preserve
">erũſoli
<
lb
/>
<
figure
xlink:label
="
fig-0157-01
"
xlink:href
="
fig-0157-01a
"
number
="
111
">
<
image
file
="
0157-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0157-01
"/>
</
figure
>
<
note
position
="
right
"
xlink:label
="
note-0157-02
"
xlink:href
="
note-0157-02a
"
xml:space
="
preserve
">29. unde-
<
lb
/>
cimi</
note
>
da a b c d, a b g h
<
lb
/>
in eadem baſi,
<
lb
/>
& </
s
>
<
s
xml:id
="
echoid-s3930
"
xml:space
="
preserve
">æquali altitu
<
lb
/>
dine inter ſe æ-
<
lb
/>
qualia. </
s
>
<
s
xml:id
="
echoid-s3931
"
xml:space
="
preserve
">Quoniã
<
lb
/>
igitur ſolidum
<
lb
/>
a b e f ſecatur
<
lb
/>
plano baſibus
<
lb
/>
æquidiſtãte, erit
<
lb
/>
ſolidum g h e f
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0157-03
"
xlink:href
="
note-0157-03a
"
xml:space
="
preserve
">18. huius</
note
>
adipſum a b g </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>