Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of handwritten notes

< >
< >
page |< < (18) of 213 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div227" type="section" level="1" n="76">
          <p>
            <s xml:id="echoid-s3729" xml:space="preserve">
              <pb o="18" file="0147" n="147" rhead="DE CENTRO GRAVIT. SOLID."/>
            tione quarta Apollonius demonſtrauit. </s>
            <s xml:id="echoid-s3730" xml:space="preserve">Si igitur à ſingu-
              <lb/>
            lis horum circulorum, duo cylindri fiant; </s>
            <s xml:id="echoid-s3731" xml:space="preserve">unus quidem ad
              <lb/>
            baſis partes; </s>
            <s xml:id="echoid-s3732" xml:space="preserve">alter ad partes uerticis: </s>
            <s xml:id="echoid-s3733" xml:space="preserve">inſcripta erit in co-
              <lb/>
            no ſolida quædam figura, & </s>
            <s xml:id="echoid-s3734" xml:space="preserve">altera circumſcripta ex cylin-
              <lb/>
            dris æqualem altitudinem habentibus conſtans; </s>
            <s xml:id="echoid-s3735" xml:space="preserve">quorum
              <lb/>
            unuſquiſque, qui in
              <lb/>
              <figure xlink:label="fig-0147-01" xlink:href="fig-0147-01a" number="100">
                <image file="0147-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0147-01"/>
              </figure>
            figura inſcripta con-
              <lb/>
            tinetur æqualis eſt ei,
              <lb/>
            qui ab eodem fit cir-
              <lb/>
            culo in figura circũ-
              <lb/>
            ſcripta. </s>
            <s xml:id="echoid-s3736" xml:space="preserve">Itaque cylin
              <lb/>
            drus o p æqualis eſt
              <lb/>
            cylindro o n; </s>
            <s xml:id="echoid-s3737" xml:space="preserve">cylin-
              <lb/>
            drus r s cylĩdro r q;
              <lb/>
            </s>
            <s xml:id="echoid-s3738" xml:space="preserve">cylindrus u x cylin-
              <lb/>
            dro u t cſt æqualis; </s>
            <s xml:id="echoid-s3739" xml:space="preserve">
              <lb/>
            & </s>
            <s xml:id="echoid-s3740" xml:space="preserve">alii aliis ſimiliter. </s>
            <s xml:id="echoid-s3741" xml:space="preserve">
              <lb/>
            quare conſtat circũ-
              <lb/>
            ſcriptam figuram ſu-
              <lb/>
            perare inſcriptam cy
              <lb/>
            lindro, cuius baſis eſt
              <lb/>
            circulus circa diametrum a c, & </s>
            <s xml:id="echoid-s3742" xml:space="preserve">axis d e. </s>
            <s xml:id="echoid-s3743" xml:space="preserve">atque hic eſtmi-
              <lb/>
            nor ſolida magnitudine propoſita.</s>
            <s xml:id="echoid-s3744" xml:space="preserve"/>
          </p>
        </div>
        <div xml:id="echoid-div229" type="section" level="1" n="77">
          <head xml:id="echoid-head84" xml:space="preserve">PROBLEMA III. PROPOSITIO XII.</head>
          <p>
            <s xml:id="echoid-s3745" xml:space="preserve">
              <emph style="sc">Data</emph>
            coni portione, poteſt ſolida quædam
              <lb/>
            figura inſcribi, & </s>
            <s xml:id="echoid-s3746" xml:space="preserve">altera circumſcribi ex cylindri
              <lb/>
            portionibus æqualem altitudinem habentibus;
              <lb/>
            </s>
            <s xml:id="echoid-s3747" xml:space="preserve">ita ut circumſcripta inſcriptam exuperet, magni
              <lb/>
            tudine, quæ minor ſit ſolida magnitudine pro-
              <lb/>
            poſita.</s>
            <s xml:id="echoid-s3748" xml:space="preserve"/>
          </p>
        </div>
      </text>
    </echo>