Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Table of handwritten notes
<
1 - 8
[out of range]
>
<
1 - 8
[out of range]
>
page
|<
<
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div254
"
type
="
section
"
level
="
1
"
n
="
87
">
<
p
>
<
s
xml:id
="
echoid-s4165
"
xml:space
="
preserve
">
<
pb
file
="
0168
"
n
="
168
"
rhead
="
FED. COMMANDINI
"/>
ſunt uertice, eandem proportionem habent, quam ipſarũ
<
lb
/>
baſes. </
s
>
<
s
xml:id
="
echoid-s4166
"
xml:space
="
preserve
">eadem ratione pyramis a c l k pyramidi b c l k: </
s
>
<
s
xml:id
="
echoid-s4167
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4168
"
xml:space
="
preserve
">py
<
lb
/>
ramis a d l k ipſi b d l k pyramidi æqualis erit. </
s
>
<
s
xml:id
="
echoid-s4169
"
xml:space
="
preserve
">Itaque ſi a py
<
lb
/>
ramide a c l d auferantur pyramides a clk, a d l k: </
s
>
<
s
xml:id
="
echoid-s4170
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4171
"
xml:space
="
preserve
">à pyra
<
lb
/>
mide b c l d auferãtur pyramides b c l k, d b l K: </
s
>
<
s
xml:id
="
echoid-s4172
"
xml:space
="
preserve
">quæ relin-
<
lb
/>
quuntur erunt æqualia. </
s
>
<
s
xml:id
="
echoid-s4173
"
xml:space
="
preserve
">æqualis igitur eſt pyramis a c d k
<
lb
/>
pyramidi b c d _K_. </
s
>
<
s
xml:id
="
echoid-s4174
"
xml:space
="
preserve
">Rurſus ſi per lineas a d, d e ducatur pla-
<
lb
/>
num quod pyramidem ſecet: </
s
>
<
s
xml:id
="
echoid-s4175
"
xml:space
="
preserve
">ſitq; </
s
>
<
s
xml:id
="
echoid-s4176
"
xml:space
="
preserve
">eius & </
s
>
<
s
xml:id
="
echoid-s4177
"
xml:space
="
preserve
">baſis communis
<
lb
/>
ſectio a e m: </
s
>
<
s
xml:id
="
echoid-s4178
"
xml:space
="
preserve
">ſimiliter oſtendetur pyramis a b d K æqualis
<
lb
/>
pyramidi a c d
<
emph
style
="
sc
">K</
emph
>
. </
s
>
<
s
xml:id
="
echoid-s4179
"
xml:space
="
preserve
">ducto denique alio piano per lineas c a,
<
lb
/>
a f: </
s
>
<
s
xml:id
="
echoid-s4180
"
xml:space
="
preserve
">ut eius, & </
s
>
<
s
xml:id
="
echoid-s4181
"
xml:space
="
preserve
">trianguli c d b communis ſectio ſit c fn, py-
<
lb
/>
ramis a b c k pyramidi a c d
<
emph
style
="
sc
">K</
emph
>
æqualis demonſtrabitur. </
s
>
<
s
xml:id
="
echoid-s4182
"
xml:space
="
preserve
">cũ
<
lb
/>
ergo tres pyramides b c d _k_, a b d k, a b c k uni, & </
s
>
<
s
xml:id
="
echoid-s4183
"
xml:space
="
preserve
">eidem py
<
lb
/>
ramidia c d k ſint æquales, omnes inter ſe ſe æquales erũt.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s4184
"
xml:space
="
preserve
">Sed ut pyramis a b c d ad pyramidem a b c k, ita d e axis ad
<
lb
/>
axem k e, ex uigeſima propoſitione huius: </
s
>
<
s
xml:id
="
echoid-s4185
"
xml:space
="
preserve
">ſunt enim hæ
<
lb
/>
pyramides in eadem baſi, & </
s
>
<
s
xml:id
="
echoid-s4186
"
xml:space
="
preserve
">axes cum baſibus æquales con
<
lb
/>
tinent angulos, quòd in eadem recta linea conſtituantur. </
s
>
<
s
xml:id
="
echoid-s4187
"
xml:space
="
preserve
">
<
lb
/>
quare diuidendo, ut tres pyramides a c d k, b c d _K_, a b d _K_
<
lb
/>
ad pyramidem a b c _K_, ita d _k_ ad _K_ e. </
s
>
<
s
xml:id
="
echoid-s4188
"
xml:space
="
preserve
">conſtat igitur lineam
<
lb
/>
d K ipſius _K_ e triplam eſſe. </
s
>
<
s
xml:id
="
echoid-s4189
"
xml:space
="
preserve
">ſed & </
s
>
<
s
xml:id
="
echoid-s4190
"
xml:space
="
preserve
">a k tripla eſt K f: </
s
>
<
s
xml:id
="
echoid-s4191
"
xml:space
="
preserve
">itemque
<
lb
/>
b K ipſius _K_ g: </
s
>
<
s
xml:id
="
echoid-s4192
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4193
"
xml:space
="
preserve
">c
<
emph
style
="
sc
">K</
emph
>
ipſius
<
emph
style
="
sc
">K</
emph
>
l tripla. </
s
>
<
s
xml:id
="
echoid-s4194
"
xml:space
="
preserve
">quod eodem modo
<
lb
/>
demonſtrabimus.</
s
>
<
s
xml:id
="
echoid-s4195
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4196
"
xml:space
="
preserve
">Sit pyramis, cuius baſis quadrilaterum a b c d; </
s
>
<
s
xml:id
="
echoid-s4197
"
xml:space
="
preserve
">axis e f:
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s4198
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4199
"
xml:space
="
preserve
">diuidatur e fin g, ita ut e g ipſius g f ſit tripla. </
s
>
<
s
xml:id
="
echoid-s4200
"
xml:space
="
preserve
">Dico cen-
<
lb
/>
trum grauitatis pyramidis eſſe punctum g. </
s
>
<
s
xml:id
="
echoid-s4201
"
xml:space
="
preserve
">ducatur enim
<
lb
/>
linea b d diuidens baſim in duo triangula a b d, b c d: </
s
>
<
s
xml:id
="
echoid-s4202
"
xml:space
="
preserve
">ex
<
lb
/>
quibus intelligãtur cõſtitui duæ pyramides a b d e, b c d e: </
s
>
<
s
xml:id
="
echoid-s4203
"
xml:space
="
preserve
">
<
lb
/>
ſitque pyramidis a b d e axis e h; </
s
>
<
s
xml:id
="
echoid-s4204
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4205
"
xml:space
="
preserve
">pyramidis b c d e axis
<
lb
/>
e K: </
s
>
<
s
xml:id
="
echoid-s4206
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4207
"
xml:space
="
preserve
">iungatur h _K_, quæ per ftranſibit: </
s
>
<
s
xml:id
="
echoid-s4208
"
xml:space
="
preserve
">eſt enim in ipſa h K
<
lb
/>
centrum grauitatis magnitudinis compoſitæ ex triangulis
<
lb
/>
a b d, b c d, hoc eſt ipſius quadrilateri. </
s
>
<
s
xml:id
="
echoid-s4209
"
xml:space
="
preserve
">Itaque centrum gra
<
lb
/>
uitatis pyramidis a b d e ſit punctum l: </
s
>
<
s
xml:id
="
echoid-s4210
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4211
"
xml:space
="
preserve
">pyramidis b c d e
<
lb
/>
ſit m. </
s
>
<
s
xml:id
="
echoid-s4212
"
xml:space
="
preserve
">ductaigitur l m ipſi h m lineæ æquidiſtabit: </
s
>
<
s
xml:id
="
echoid-s4213
"
xml:space
="
preserve
">nam el ad
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0168-01
"
xlink:href
="
note-0168-01a
"
xml:space
="
preserve
">2. ſexti.</
note
>
</
s
>
</
p
>
</
div
>
</
text
>
</
echo
>