Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Table of handwritten notes
<
1 - 8
[out of range]
>
<
1 - 8
[out of range]
>
page
|<
<
(34)
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div263
"
type
="
section
"
level
="
1
"
n
="
90
">
<
p
>
<
s
xml:id
="
echoid-s4455
"
xml:space
="
preserve
">
<
pb
o
="
34
"
file
="
0179
"
n
="
179
"
rhead
="
DE CENTRO GRAVIT. SOLID.
"/>
culi, uel ellipſes c d, e ſ a b ad circulum, uel ellipſim a b. </
s
>
<
s
xml:id
="
echoid-s4456
"
xml:space
="
preserve
">In-
<
lb
/>
telligatur pyramis q baſim habens æqualem tribus rectan
<
lb
/>
gulis a b, e f, c d; </
s
>
<
s
xml:id
="
echoid-s4457
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4458
"
xml:space
="
preserve
">altitudinem eãdem, quam fruſtum a d.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s4459
"
xml:space
="
preserve
">intelligatur etiam conus, uel coni portio q, eadem altitudi
<
lb
/>
ne, cuius baſis ſit tribus circulis, uel tribus ellipſibus a b,
<
lb
/>
e f, c d æqualis. </
s
>
<
s
xml:id
="
echoid-s4460
"
xml:space
="
preserve
">poſtremo intelligatur pyramis a l b, cuius
<
lb
/>
baſis ſit rectangulum m n o p, & </
s
>
<
s
xml:id
="
echoid-s4461
"
xml:space
="
preserve
">altitudo eadem, quæ fru-
<
lb
/>
ſti: </
s
>
<
s
xml:id
="
echoid-s4462
"
xml:space
="
preserve
">itemq, intelligatur conus, uel coni portio a l b, cuius
<
lb
/>
baſis circulus, uel ellipſis circa diametrum a b, & </
s
>
<
s
xml:id
="
echoid-s4463
"
xml:space
="
preserve
">eadem al
<
lb
/>
titudo. </
s
>
<
s
xml:id
="
echoid-s4464
"
xml:space
="
preserve
">ut igitur rectangula a b, e f, c d ad rectangulum a b,
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0179-01
"
xlink:href
="
note-0179-01a
"
xml:space
="
preserve
">6. 11. duo
<
lb
/>
decimi</
note
>
ita pyramis q ad pyramidem a l b; </
s
>
<
s
xml:id
="
echoid-s4465
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4466
"
xml:space
="
preserve
">ut circuli, uel ellip-
<
lb
/>
ſes a b, e f, c d ad a b circulum, uel ellipſim, ita conus, uel co
<
lb
/>
ni portio q ad conum, uel coni portionem a l b. </
s
>
<
s
xml:id
="
echoid-s4467
"
xml:space
="
preserve
">conus
<
lb
/>
igitur, uel coni portio q ad conum, uel coni portionem
<
lb
/>
a l b eſt, ut pyramis q ad pyramidem a l b. </
s
>
<
s
xml:id
="
echoid-s4468
"
xml:space
="
preserve
">ſed pyramis
<
lb
/>
a l b ad pyramidem a g b eſt, ut altitudo ad altitudinem, ex
<
lb
/>
20. </
s
>
<
s
xml:id
="
echoid-s4469
"
xml:space
="
preserve
">huius: </
s
>
<
s
xml:id
="
echoid-s4470
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4471
"
xml:space
="
preserve
">ita eſt conus, uel coni portio al b ad conum,
<
lb
/>
uel coni portionem a g b ex 14. </
s
>
<
s
xml:id
="
echoid-s4472
"
xml:space
="
preserve
">duodecimi elementorum,
<
lb
/>
& </
s
>
<
s
xml:id
="
echoid-s4473
"
xml:space
="
preserve
">ex iis, quæ nos demonſtrauimus in commentariis in un-
<
lb
/>
decimam de conoidibus, & </
s
>
<
s
xml:id
="
echoid-s4474
"
xml:space
="
preserve
">ſphæroidibus, propoſitione
<
lb
/>
quarta. </
s
>
<
s
xml:id
="
echoid-s4475
"
xml:space
="
preserve
">pyramis autem a g b ad pyramidem c g d propor-
<
lb
/>
tionem habet compoſitam ex proportione baſium & </
s
>
<
s
xml:id
="
echoid-s4476
"
xml:space
="
preserve
">pro
<
lb
/>
portione altitudinum, ex uigeſima prima huius: </
s
>
<
s
xml:id
="
echoid-s4477
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4478
"
xml:space
="
preserve
">ſimili-
<
lb
/>
ter conus, uel coni portio a g b a d conum, uel coni portio-
<
lb
/>
nem c g d proportionem habet compoſitã ex eiſdem pro-
<
lb
/>
portionibus, per ea, quæ in dictis commentariis demon-
<
lb
/>
ſtrauimus, propoſitione quinta, & </
s
>
<
s
xml:id
="
echoid-s4479
"
xml:space
="
preserve
">ſexta: </
s
>
<
s
xml:id
="
echoid-s4480
"
xml:space
="
preserve
">altitudo enim in
<
lb
/>
utriſque eadem eſt, & </
s
>
<
s
xml:id
="
echoid-s4481
"
xml:space
="
preserve
">baſes inter ſe ſe eandem habent pro-
<
lb
/>
portionem. </
s
>
<
s
xml:id
="
echoid-s4482
"
xml:space
="
preserve
">ergo ut pyramis a g b ad pyramidem c g d, ita
<
lb
/>
eſt conus, uel coni portio a g b ad a g d conum, uel coni
<
lb
/>
portionem: </
s
>
<
s
xml:id
="
echoid-s4483
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4484
"
xml:space
="
preserve
">per conuerſionẽ rationis, ut pyramis a g b
<
lb
/>
ad fruſtū à pyramide abſciſſum, ita conus uel coni portio
<
lb
/>
a g b ad fruſtum a d. </
s
>
<
s
xml:id
="
echoid-s4485
"
xml:space
="
preserve
">ex æquali igitur, ut pyramis q ad fru-
<
lb
/>
ſtum à pyramide abſciſſum, ita conus uel coni portio q </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>