Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Table of handwritten notes
<
1 - 8
[out of range]
>
<
1 - 8
[out of range]
>
page
|<
<
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div247
"
type
="
section
"
level
="
1
"
n
="
85
">
<
p
>
<
s
xml:id
="
echoid-s4067
"
xml:space
="
preserve
">
<
pb
file
="
0164
"
n
="
164
"
rhead
="
FED. COMMANDINI
"/>
qr, eodem, quo ſupra, modo oſtendemns f g ad p q, ut f h
<
lb
/>
ad p r. </
s
>
<
s
xml:id
="
echoid-s4068
"
xml:space
="
preserve
">ſed priſma a e ad ipſum k o eſt, ut f h ad p r. </
s
>
<
s
xml:id
="
echoid-s4069
"
xml:space
="
preserve
">ergo
<
lb
/>
& </
s
>
<
s
xml:id
="
echoid-s4070
"
xml:space
="
preserve
">ut f g axis ad axem p q. </
s
>
<
s
xml:id
="
echoid-s4071
"
xml:space
="
preserve
">ex quibus fit, ut pyramis a b c d f
<
lb
/>
ad pyrami-
<
lb
/>
<
figure
xlink:label
="
fig-0164-01
"
xlink:href
="
fig-0164-01a
"
number
="
120
">
<
image
file
="
0164-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0164-01
"/>
</
figure
>
dẽ k l m n p
<
lb
/>
eandem-ha
<
lb
/>
beat pro-
<
lb
/>
portionẽ,
<
lb
/>
quãaxis ad
<
lb
/>
axẽ. </
s
>
<
s
xml:id
="
echoid-s4072
"
xml:space
="
preserve
">quod
<
lb
/>
demonſtrã
<
lb
/>
dũ fuerat.</
s
>
<
s
xml:id
="
echoid-s4073
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4074
"
xml:space
="
preserve
">Simili ra
<
lb
/>
tione in a-
<
lb
/>
liis priſma-
<
lb
/>
tibus & </
s
>
<
s
xml:id
="
echoid-s4075
"
xml:space
="
preserve
">py
<
lb
/>
ramidibus eadem demonſtrabuntur.</
s
>
<
s
xml:id
="
echoid-s4076
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div252
"
type
="
section
"
level
="
1
"
n
="
86
">
<
head
xml:id
="
echoid-head93
"
xml:space
="
preserve
">THEOREMA XVII. PROPOSITIO XXI.</
head
>
<
p
>
<
s
xml:id
="
echoid-s4077
"
xml:space
="
preserve
">Priſmata omnia, & </
s
>
<
s
xml:id
="
echoid-s4078
"
xml:space
="
preserve
">pyramides inter ſe propor
<
lb
/>
tionem habent compoſitam ex proportione ba-
<
lb
/>
ſium, & </
s
>
<
s
xml:id
="
echoid-s4079
"
xml:space
="
preserve
">proportione altitudinum.</
s
>
<
s
xml:id
="
echoid-s4080
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4081
"
xml:space
="
preserve
">Sint duo priſmata a e, g m: </
s
>
<
s
xml:id
="
echoid-s4082
"
xml:space
="
preserve
">ſitq; </
s
>
<
s
xml:id
="
echoid-s4083
"
xml:space
="
preserve
">priſmatis a e baſis qua
<
lb
/>
drilaterum a b c d, & </
s
>
<
s
xml:id
="
echoid-s4084
"
xml:space
="
preserve
">altitudo e f: </
s
>
<
s
xml:id
="
echoid-s4085
"
xml:space
="
preserve
">priſmatis uero g m ba-
<
lb
/>
fis quadrilaterum g h K l, & </
s
>
<
s
xml:id
="
echoid-s4086
"
xml:space
="
preserve
">altitudo m n. </
s
>
<
s
xml:id
="
echoid-s4087
"
xml:space
="
preserve
">Dico priſma a e
<
lb
/>
ad priſma g m proportionem habere compoſitam ex pro
<
lb
/>
portione baſis a b c d ad baſim g h k l, & </
s
>
<
s
xml:id
="
echoid-s4088
"
xml:space
="
preserve
">ex proportione
<
lb
/>
altitudinis e f, ad altitudinem m n.</
s
>
<
s
xml:id
="
echoid-s4089
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4090
"
xml:space
="
preserve
">Sint enim primum e f, m n æquales: </
s
>
<
s
xml:id
="
echoid-s4091
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4092
"
xml:space
="
preserve
">ut baſis a b c d
<
lb
/>
ad baſim g h k l, ita fiat linea, in qua o ad lineam, in qua p:
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s4093
"
xml:space
="
preserve
">ut autem e f ad m n, ita linea p ad lineam q. </
s
>
<
s
xml:id
="
echoid-s4094
"
xml:space
="
preserve
">erunt lineæ
<
lb
/>
p q inter ſe æquales. </
s
>
<
s
xml:id
="
echoid-s4095
"
xml:space
="
preserve
">Itaque priſma a e ad priſma g m </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>